Structure Strength Analysis and Optimization Design of the Moving Arm of the Loader Based on ANSYS

2011 ◽  
Vol 332-334 ◽  
pp. 1892-1895
Author(s):  
Han Wu Liu ◽  
Ke Wu ◽  
Yun Hui Du ◽  
Peng Zhang

It is necessary to analyze the structural strength of the moving arm and make some optimization designs to reduce its weight. According to the actual structural sizes of the moving arm of a loader, we build its 3D mathematical model by bottom-to-up modeling method in ANSYS. Having considered bearing actual loads and displacement constraint conditions of a moving arm in actual working situations, we got the stress distribution rules and the destructible locations of the moving arm in a working cycle after analyzing the strengths of the moving arm in six different typical kinds of working conditions. Based on this, we made the design module and the structural optimization designs of the moving arm by using first-order method based on the objective function's sensitive degree to design variables in ANSYS software. The results of the study suggest that the maximum equivalent effective stresses in six different typical kinds of working conditions are all less than the admissible stress of the material of the moving arm, and the maximum bearing stress exists in the working condition with bearing unbalance loadings in horizontal and vertical directions. The advantage of the optimization design is outstanding with the 67% less of the maximum equivalent stress of the moving arm and 15.4% less of the volume.

2019 ◽  
Vol 136 ◽  
pp. 03019
Author(s):  
Xiaoke He ◽  
Chenjun Zhang ◽  
Ding Tian

Stress concentration zone and maximumdeformation zone ofgate valve at 1.6MPaworking pressure were found out according to strength calculationand analysisby ANSYSsoftware, which proceedsthe processes of modeling, meshing, constraintsdefine, applyingloadsand solving. Design variables,state variablesand optimize targetswere defined by target optimization design function of ANSYS Workbenchin ordertoreveal the influence law of eachdesign variable onthe gate valve body equivalent stress,and the optimal valuesof design variablescould be obtained after calculation. The valve structure was improved and stress concentration was reduced from the perspective of safety and economy,whichcouldprovidea referencefor reliable valvedesign.The shape of the valve body was optimized by topology optimization design in order to achieve the rational use of materials.Researchresultsshow that the maximum stress lies on both sides of the valve rib plateand the stress is beyond thematerial allowable value, but the valve body has little deformation.After optimization the maximum equivalent stress of valve body is decreasedby23.91%and the valvebodyhasuniformstress distribution, the mass of the valve body is reduced by1.4%as well. Material utilization is improvedeffectively,which indicates that the optimizationdesignbased onANSYS Workbenchis highly efficient and reliable.


2022 ◽  
Vol 355 ◽  
pp. 02055
Author(s):  
Guojing Ye ◽  
Jinsong Zhou ◽  
Bingshao Li

Based on the actual parameters of the capacitor energy storage cabinet on the top of the monorail train, built the cabinet’s finite element model. Then, according to EN 12663-1, set the calibration conditions and fatigue working conditions. Carried out the simulation calculation under different conditions, respectively. The calculation results under the static calibration conditions show that the maximum equivalent stress of each node on the model is smaller than the allowable stress under all working conditions. Therefore, the static strength of the cabinet meets the design requirements. Plotted Goodman fatigue limit diagrams of the cabinet’s base metal and weld and modified them in the Smith form. Then plotted the average stress and stress amplitude under fatigue working conditions in the corresponding scatter diagram. The diagram s show that all points are located within the permitted area. The results show that the fatigue strength of the cabinet meets the requirements of design and use.


2009 ◽  
Vol 419-420 ◽  
pp. 89-92
Author(s):  
Zhuo Yi Yang ◽  
Yong Jie Pang ◽  
Zai Bai Qin

Cylinder shell stiffened by rings is used commonly in submersibles, and structure strength should be verified in the initial design stage considering the thickness of the shell, the number of rings, the shape of ring section and so on. Based on the statistical techniques, a strategy for optimization design of pressure hull is proposed in this paper. Its central idea is that: firstly the design variables are chosen by referring criterion for structure strength, then the samples for analysis are created in the design space; secondly finite element models corresponding to the samples are built and analyzed; thirdly the approximations of these analysis are constructed using these samples and responses obtained by finite element model; finally optimization design result is obtained using response surface model. The result shows that this method that can improve the efficiency and achieve optimal intention has valuable reference information for engineering application.


2013 ◽  
Vol 321-324 ◽  
pp. 1794-1798
Author(s):  
Li Kun Guan ◽  
Wei Dong Liu ◽  
Ning Ning Wang

In this paper,in view of the fork head often broken of the main drive system of a medium thickness plate mill,finite element analysis software ANSYS is used to establish universal coupling model and analyse static strength of the universal coupling, woning maximum stress value of the fork head and cross shaft at maximum load and analysing fracture reason of the fork,which could provide a theoretical basis for the cross shaft universal coupling strength analysis and structural optimization design.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bin Zheng ◽  
Yi Cai ◽  
Kelun Tang

Purpose The purpose of this paper is to realize the lightweight of connecting rod and meet the requirements of low energy consumption and vibration. Based on the structural design of the original connecting rod, the finite element analysis was conducted to reduce the weight and increase the natural frequencies, so as to reduce materials consumption and improve the energy efficiency of internal combustion engine. Design/methodology/approach The finite element analysis, structural optimization design and topology optimization of the connecting rod are applied. Efficient hybrid method is deployed: static and modal analysis; and structure re-design of the connecting rod based on topology optimization. Findings After the optimization of the connecting rod, the weight is reduced from 1.7907 to 1.4875 kg, with a reduction of 16.93%. The maximum equivalent stress of the optimized connecting rod is 183.97 MPa and that of the original structure is 217.18 MPa, with the reduction of 15.62%. The first, second and third natural frequencies of the optimized connecting rod are increased by 8.89%, 8.85% and 11.09%, respectively. Through the finite element analysis and based on the lightweight, the maximum equivalent stress is reduced and the low-order natural frequency is increased. Originality/value This paper presents an optimization method on the connecting rod structure. Based on the statics and modal analysis of the connecting rod and combined with the topology optimization, the size of the connecting rod is improved, and the static and dynamic characteristics of the optimized connecting rod are improved.


2014 ◽  
Vol 709 ◽  
pp. 176-179
Author(s):  
Han Liu ◽  
Fang Zhen Song ◽  
Ming Ming Li ◽  
Bo Song

The problem is solved that it is hard to provide analysis formulas about the maximum equivalent stress, the maximum shear stress and the structural geometric parameters for a ship. The finite element calculation is done with orthogonal experimental design under the most dangerous case. The data obtained are used as the training and test samples to establish BP neural network models of ship’s maximum equivalent stress and maximum shear stress. With the aid of Neural network toolbox in MATLAB, the topological structure of BP neural network mapping relationship between the whole ship performance indexes and design variables is established. The training and testing are completed with the data tested by the shipyard and the correctness of this network is verified. The neural network required for further optimization design is obtained. The neural network is helpful in reducing the ship mass without exceeding the allowable stress.


2011 ◽  
Vol 211-212 ◽  
pp. 449-453
Author(s):  
Liang Zhao ◽  
Ke Zhang ◽  
Yu Hou Wu ◽  
Jia Sun ◽  
Hui Ye Yu

To take ZLP500L type suspended platform for research object, establishes parametric finite element model with ANSYS, and analyze static performance of its structure. Define the platform section parameters as the design variables, and structure in dangerous working conditions of stress and displacement as state variables, makes optimization design of platform with first-order method, so obtain lightweight high degree of section parameters which reducing 26.16% total quality of platform. Meanwhile makes buckling analysis of optimized platform to obtain smallest the critical load coefficient is 171.56, and then verifies the platform structure stability, provides theory basis to ZLP500L type suspended platform design and alteration.


2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


2021 ◽  
Vol 11 (20) ◽  
pp. 9584
Author(s):  
Weihua Wei ◽  
Fangxu Peng ◽  
Yingli Li ◽  
Bingrui Chen ◽  
Yiqi Xu ◽  
...  

Firstly, the force of an extrusion roller under actual working condition was analyzed while the contact stress between the roller shaft and the roller sleeve and the extrusion force between the roller sleeve and the material were calculated. Secondly, static analysis of the extrusion roller was carried out using ANSYS software, and conclusively, the stress concentration appears at the roller sleeve’s inner ring step. Furthermore, an optimization scheme of the setting transition arc at the step of the contact surface between roller shaft and roller sleeve was proposed, and a simulation test was carried out., Finally, the maximum equivalent stress of the extrusion roller was set at the minimum value of the objective function; the extrusion roller was further optimized by using the direct optimization module in ANSYS Workbench. The results from optimization show that the maximum equivalent stress is reduced by 29% and the maximum deformation is decreased by 28%. It can be seen that the optimization scheme meets the strength and deformation requirements of the extrusion roller design. The optimization scheme can effectively improve the bearing capacity of the extrusion roller and reduce its production cost. This can provide a reference for the design of the roller press.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Ying Wu ◽  
Yuan Zhang ◽  
Sixi Zha ◽  
Guojin Qin

Abstract Due to the combined effects of natural and human factors, the ground subsidence is aggravated, which brings potential hazards to the normal operation of buried polyethylene (PE) pipelines. A variety of variables influences the safety of buried pipelines, while the existing research lacks detailed analysis on the issue. A finite element model of buried PE pipeline was developed to analyze how various factors affected the strength of PE pipeline under ground subsidence. Furthermore, the orthogonal test combined with the gray correlation degree was used to analyze the significance of each influencing factor. The results show that (1) the strain rate of the pipe is different at different ground subsidence rates, and the maximum equivalent stress of the pipe increases with the increase of the strain rate; (2) the maximum equivalent stress diminishes with the increasing wall thickness of the pipeline and the length of the transition section; and (3) the factor that has the most significant influence on the maximum equivalent stress of the pipeline is the settlement, followed by the strain rate and the length of the transition section. The internal pressure has the least influence on the maximum equivalent stress in the context of ground subsidence induced stresses.


Sign in / Sign up

Export Citation Format

Share Document