The Design and Experimental Study of Automatic Backwash Fiber Bundle Filter

2011 ◽  
Vol 339 ◽  
pp. 130-133
Author(s):  
Yang Min Zhou ◽  
Chao Li ◽  
Li Li Xu ◽  
Si Yi Luo ◽  
Chui Jie Yi

A kind of automatic backwash fiber bundle filter which is used for filtering the washing BFS water is designed and its properties have been studied. The high density particles in washing BFS water and suspended slag wool are the key factors for the filtering effect. By optimization design of structure, the filter has properties of big particles precipitation, automatic discharge of floating sludge and fixed pressure backwash. Through experimental tests, the results show that: the high density particles precipitation and filter layer regeneration rate are quicker; the ability of automatic discharge floating sludge is higher. Compared with the traditional fiber filters, this kind filter efficiency of this kind filters increases 15%.

2021 ◽  
Vol 57 (4) ◽  
pp. 209-215
Author(s):  
Ibrahim Ramadan ◽  
Maria Tanase

The experimental study conducted for this article was made using the butt fusion welding procedure for high density polyethylene (HDPE) pipes. PE100 (SDR 17, PN 10) water pipes were used, as for the experimental study parts of around 200 to 300 mm were welded, using different welding parameters. The influence of the welding parameters on the pipes resistance was analyzed, through visual examination and experimental tests such as tensile, bending and pressure tests.


2010 ◽  
Vol 139-141 ◽  
pp. 2464-2468
Author(s):  
Yi Ming Wang ◽  
Shao Hua Zhang ◽  
Zhi Hong Zhang ◽  
Jing Li

The precision of transferring paper is key factors to decide the print overprint accuracy, and vibration has an important impact on paper transferring accuracy. Empirical mode decomposition (EMD) can be used to extract the features of vibration test signal. According to the intrinsic mode function (IMF) by extracted, it is useful to analyze the dynamic characteristics of swing gripper arm on motion state. Due to the actual conditions of printing, the vibration signal of Paper-Transferring mechanism system is complex quasi periodic signals. Hilbert-Huang marginal spectrum that is based on empirical mode decomposition can solve the problem which is modals leakage by FFT calculated in frequency domain. Through the experimental research, the phase information of impact load at the moment of grippers opening or closing, which can be used for the optimization design of Paper-Transferring system and the improvement in the accuracy of swing gripper arm.


2021 ◽  
pp. 51-61
Author(s):  
A. Yu. Vasil'ev ◽  
V. V. Petrovskaya ◽  
E. A. Nichipor ◽  
V. G. Alpatova ◽  
N. N. Potrakhov ◽  
...  

During the course of this experimental study tomograms of extracted teeth were analyzed before and after filling the root canals with an endodontic material and fragments of broken metal instruments for root canal treatment. During the first stage of the experiment, untreated extracted teeth were scanned using conebeam computed tomography and microfocus cone-beam computed tomography. A comparative assessment of capabilities of the two methods of cone-beam computed tomography based on examination of untreated root canals was carried out. The second part of the study is dedicated to visualization of root canals that contain foreign high-density materials.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 194
Author(s):  
Shengbao Yu ◽  
Yiming Wei ◽  
Jialin Zhang ◽  
Shilong Wang

In the semi-aviation frequency-domain electromagnetic measurement, the induction air-core coil and the differential pre-amplifier circuit introduce noise, which affects the sensor and results in receiving weak signals and improving the signal-to-noise ratio of the system. In response to this problem, by analyzing the physical structure of the air-core coil sensor and the mechanism of the amplification circuit, combined with the simulation and experimental tests of voltage noise, current noise, resistance noise and other noise components, analyzed that the thermal noise is the main component of the sensor noise in the system frequency band, but directly removing the matching resistor increases the instability of the circuit, causes the coil to work in an underdamped state, and generates a time domain oscillation at the resonant frequency, source impedance analysis and analysis of differential pre-amplifier circuit in the frequency-domain detection method, abandoning the matching resistance scheme and magnetic flux negative feedback scheme. The matching capacitor is added to make the receiver detect the frequency range in the 1–10 kHz range. In normal operation, the noise level reaches 10 nV level, which not only increases the stability of the circuit, but also reduces the noise of the sensor. It has far-reaching significance for the detection of weak frequency signals.


2019 ◽  
Vol 800 ◽  
pp. 52-59
Author(s):  
Francisco Casesnoves

Today, artificial implants (AI) industry depends strongly on tribological constitution of the material (s) of the implant. Erosion, corrosion, tribocorrosion and biocorrosion are essential factors to determine both functionality and lifetime of the AIs. Histo-Biocompatibility is also an additional constraint, indispensable for implant manufacturing process. The prediction of durability, based on the computational and experimental study of constituents of AI material (s) are key factors to obtain objective data of any AI characteristics. This contribution deals with a computational comparative analysis of materials for hip implants using Archard’s model mainly. Selected hip implant material hardness are Co-Cr alloy and Titanium types. Method is carried out with specific material data, e.g., hardness or wear constants, nonlinear optimization and graphical subroutines. Results presented are both numerical and graphical. Particular interest is focused on application of the 3D Graphical Optimization method.


Author(s):  
Jicheng Gao ◽  
Chao Li ◽  
Yifu Shen

The aim of this work is to fabricate the high-density polyethylene–copper composites by submerged friction stir processing at different traverse speeds. The scanning electron microscopy is used to analyze the distribution of microstructure and particles. The experimental results indicated that the macrostructure morphology, microstructure and tensile strength vary depending on the traverse speed. Compared with the pure high-density polyethylene, Cu-filled polymer composites showed lower tensile strength and higher microhardness. The maximal values of the tensile strength and microhardness were achieved at traverse speeds of 30 and 15 mm/min, respectively. The thermal properties of Cu-filled high-density polyethylene composites were studied by differential scanning calorimetry. The crystalline content of the composites was decreased due to the addition of copper. From the experimental tests, it can be concluded that submerged fiction stir processing has a great potential for producing polymer–metal composites.


Author(s):  
Jiawei Bian ◽  
Dalin Zhang ◽  
Rulei Sun ◽  
Yingwei Wu ◽  
Wenxi Tian ◽  
...  

Spraying system plays an important role in the safety of PWR. To ensure homogeneous spraying of the containment, the layout of nozzles on the spray header was taken into consideration in design. In this paper, an experimental study was conducted to obtain spray characteristics data, including spray cone angle and 2-D spray flux distribution for the purpose of achieving optimal design of the spraying system. According to the specialty of the spray field involved, a testing loop with four pressure-swirl nozzles was established for the study. Spray cone angles were obtained by photograph method. The volume flux distribution was measured by collecting the spray droplet along the cross-section diameters. Based on the experimental data, typical spray flux distributions were obtained. The flux distribution results were used to build 3-D coverage models. Then these models were used to calculate the overall spray coverage in the containment. The present work introduces the experimental study of spray behavior of a typical pressure-swirl nozzle in containment and the method to evaluate spray coverage through building 3-D spray flux distribution models. The work is expected to be helpful for the optimization design of spraying systems.


Sign in / Sign up

Export Citation Format

Share Document