Effect of Heat Treatment on the Crystal Structure and Optical Band Gap of Cigs Thin Films

2011 ◽  
Vol 347-353 ◽  
pp. 94-97
Author(s):  
Lei Han ◽  
Tie Zhu Ding ◽  
Yan Lai Wang ◽  
Luo Meng Chao ◽  
Tao Shang

The CIGS thin films were prepared on ordinary soda lime glass substrates by pulsed laser deposition (PLD). The XRD and UV-visible spectrophotometer has been determined. The influence of different heat treatment temperature on crystal structure and optical properties has been studied. The results shows that heat treatment at 450°C, the films along the (112) plane preferential grow. The thin film’s structure is integrity, the film is in best crystallization conditions, band gap is 1.35eV and the film has a high visible light absorption efficiency.

2015 ◽  
Vol 1784 ◽  
Author(s):  
Mingu Kim ◽  
Gwanghyo Choi ◽  
Daeheung Yoo ◽  
Kwangmin Lee

ABSTRACTThe band gap energy of the TiO2 photocatalytic is high at 3.2 eV. Ultraviolet (UV) light irradiation (<388nm) is required for the photocatalytic application. The lowering the band gap energy of TiO2 and enlarging light absorbing area are effective ways to enhance the efficiency of photocatalytic activity. Furthermore, the morphology and crystal structure of nanosized TiO2 considerably influences its photocatalytic behavior.In this study, sodium titanate nanorods were formed using an alkali-treatment and were heat treated at different temperatures. The photoelectrochemical properties of sodium titanate nanorods was measured as a function of heat treatment temperature. The nanorods were prepared on the surface of Ti disk with a diameter of 15mm and a thickness of 3mm. Ti disk was immersed in 5 M NaOH aqueous solution at a temperature of 60 °C for 24 h. Morphology of sodium titanate nanorods was observed using FE-SEM. Crystal structure of sodium titanate nanorods was analyzed using X-ray diffractometer. Photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) was used to evaluate photoelectrochemical properties of sodium titanate nanorods. The thin amorphous sodium titanate layer was formed during alkali-treatment. The sodium titanate layer was changed to nanorods after heat treatment at a temperature of 700 °C. The thickness and length of sodium titanate nanorods obtained at 700 °C were around 100 nm and 1μm, respectively. The crystal structure of sodium titanate was identified with Na2Ti6O13. Above 900 °C, the morphology of nanorods changed to agglomerated shape and the thickness of nanorods increased to 1 μm. The lowest value of PL was obtained at a temperature of 700 °C, while nonalkali treated specimen showed the highest value of PL. EIS revealed that polarization resistance at interface between sodium titanate nanorods and electrolyte was increased with increasing heat treatment temperature.


2014 ◽  
Vol 1670 ◽  
Author(s):  
Antony Jan ◽  
Yesheng Yee ◽  
Bruce M. Clemens

ABSTRACTThin-film absorber layers for photovoltaics have attracted much attention for their potential for low cost per unit power generation, due both to reduced material consumption and to higher tolerance for defects such as grain boundaries. Cu2ZnGeSe4 (CZGSe) comprises one such material system which has a near-optimal direct band gap of 1.6 eV for absorption of the solar spectrum, and is made primarily from earth-abundant elements.CZGSe metallic precursor films were sputtered from Cu, Zn, and Ge onto Mo-coated soda lime glass substrates. These were then selenized in a two-zone close-space sublimation furnace using elemental Se as the source, with temperatures in the range of 400 to 500 C, and at a variety of background pressures. Films approximately 1-1.5 µm thick were obtained with the expected stannite crystal structure.Next, Cu2ZnSnSe4 (CZTSe), which has a direct band gap of 1.0 eV, was prepared in a similar manner and combined with CZGSe as either compositionally homogeneous or layered absorbers. The compositional uniformity of selenide absorbers made by selenizing compositionally homogeneous Cu-Zn-Ge-Sn precursor layers was determined and the band gap as a function of composition was investigated in order to demonstrate that the band gap is tuneable for a range of compositions. For layered Cu-Zn-Ge/Cu-Zn-Sn precursor films, the composition profile was measured before and after selenization to assess the stability of the layered structure, and its applicability for forming a band-gap-graded device for improved current collection.


2013 ◽  
Vol 716 ◽  
pp. 325-327
Author(s):  
Xiao Yan Dai ◽  
Cheng Wu Shi ◽  
Yan Ru Zhang ◽  
Min Yao

In this paper, CdTe thin films were deposited on soda-lime glass substrates using CdTe powder as a source by close-spaced sublimation at higher source temperature of 700°C. The influence of the deposition time and the source-substrate distance on the chemical composition, crystal phase, surface morphology and optical band gap of CdTe thin films was systemically investigated by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscope and the ultraviolet-visible-near infrared absorption spectra, respectively. At the deposition time of 60 min and the source-substrate distance of 5 mm, the CdTe thin films had pyramid appearance with the grain size of 15 μm.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Weimin Li ◽  
Xia Yan ◽  
Armin G. Aberle ◽  
Selvaraj Venkataraj

Molybdenum (Mo) thin films are widely used as rear electrodes in copper indium gallium diselenide (CIGS) solar cells. The challenge in Mo deposition by magnetron sputtering lies in simultaneously achieving good adhesion to the substrates while retaining the electrical and optical properties. Bilayer Mo films, comprising five different thickness ratios of a high pressure (HP) deposited bottom layer and a low pressure (LP) deposited top layer, were deposited on 40 cm × 30 cm soda-lime glass substrates by DC magnetron sputtering. We focus on understanding the effects of the individual layer properties on the resulting bilayer Mo films, such as microstructure, surface morphology, and surface oxidation. We show that the thickness of the bottom HP Mo layer plays a major role in determining the micromechanical and physical properties of the bilayer Mo stack. Our studies reveal that a thicker HP Mo bottom layer not only improves the adhesion of the bilayer Mo, but also helps to improve the film crystallinity along the preferred [110] direction. However, the surface roughness and the porosity of the bilayer Mo films are found to increase with increasing bottom layer thickness, which leads to lower optical reflectance and a higher probability for oxidation at the Mo surface.


2017 ◽  
Vol 2 (1) ◽  
pp. 54-59 ◽  
Author(s):  
Shih-Fan Chen ◽  
Shea-Jue Wang ◽  
Win-Der Lee ◽  
Ming-Hong Chen ◽  
Chao-Nan Wei ◽  
...  

The back contact electrode with molybdenum (Mo) thin film is crucial to the performance of Cu(In, Ga)Se2 solar cells. In this research, Mo thin films were fabricated by direct current sputtering to attain low-resistivity molybdenum films on soda-lime glass substrates with good adhesion. The films were sputtered onto substrates in 500 nm thickness and nominally held at room temperature with deposition conditions of power and working pressure. Low resistivity (17-25 μΩ∙cm) of bi-layer molybdenum thin films were achieved with combination of top layer films deposited at 300 W with different working pressure, and bottom fixing layer film deposited at 300 W with 2.5 mTorr which adhered well on glass. Films were characterized the electrical properties, structure, residual stress, morphology by using the Hall-effect Measurement, X-ray Diffraction, and Field-Emission Scanning Electron Microscopy, respectively, to optimize the deposition conditions.


1996 ◽  
Vol 436 ◽  
Author(s):  
C. R. Ottermann ◽  
K. Bange ◽  
A. Braband ◽  
H. Haefke ◽  
W. Gutmannsbauer

AbstractAdhesion failures of Ti2 and Ta2O5 thin films deposited by reactive evaporation (RE), reactive ion plating (IP) and plasma impulse chemical vapour deposition (PICVD) on fused silica, AF 45, TEMPAX and soda-lime glass substrates are investigated by means of a micro-scratch tester. The oxide films possess thickness between 60 and 500 nm and show different mass densities depending on the deposition conditions. Scratch testing exhibits well pronounced detachment for thicker films on hard substrates. The clearance of the scratch signal is reduced with decreasing layer thickness or for softer substrate materials. The test results are also influenced by the various substrates and different chemical and mechanical properties of the films due to the alternate deposition techniques.


2014 ◽  
Vol 1603 ◽  
Author(s):  
Yong Yan ◽  
Shasha Li ◽  
Zhou Yu ◽  
Yong Zhang ◽  
Yong Zhao

ABSTRACTCu2ZnSnSe4 films were deposited on soda lime glass substrates at room temperature by one-step radio frequency magnetron-sputtering process. The effect of sputtering power on the properties of one-step deposited Cu2ZnSnSe4 thin films has been investigated. The deposited films might be suitable for the absorber layers in the solar cells. The chemical composition and the preferred orientation of the films can be optimized by the sputtering power.


2001 ◽  
Vol 697 ◽  
Author(s):  
Hisayuki Suematsu ◽  
Tsuyoshi Saikusa ◽  
Tsuneo Suzuki ◽  
Weihua Jiang ◽  
Kiyoshi Yatsui

AbstractThin films of titanium iron (TiFe) were prepared by a pulsed ion-beam evaporation (IBE) method. A pulsed ion beam of proton accelerated at 1 MV (peak) with a pulse width of 50 ns and a current of 70 kA was focused on TiFe alloy targets. Soda lime glass substrates were placed in front of the targets. Phases in the thin films were identified by X-ray diffraction (XRD). XRD results revealed that the thin films deposited on the glass substrates consist of a TiFe phase. Crystallized Ti-Fe thin films without oxides were successfully obtained. Surface roughness of the thin film was 0.16 m m.


Sign in / Sign up

Export Citation Format

Share Document