Numerical Simulation Analysis of High Strength UOE Steel Pipes

Author(s):  
Juliana E. Roza ◽  
Giuliano Malatesta ◽  
Marcelo C. Fritz ◽  
Gianluca Mannucci ◽  
Luis Chad ◽  
...  

Large diameter longitudinally welded linepipes have to fulfil increasing technical requirements in order to guarantee best performance during construction and service. The increase in natural gas demand in European, North American, South American and Asian countries, foreseen for the immediate future, necessitates the development of cost effective transportation solutions to economically exploit gas fields located in remote area. A competitive option of gas to market is represented by the use of high-pressure natural gas transmission pipelines. In particular, for natural gas transportation over long distances, the use of high grade steel (X80, X100 or even higher) large diameter (36″ to 56″ of outer diameter), gas pipelines is found to be very attractive and economical. With respect to SAW pipes attention is focused on seam weld consumables and forming tools. In particular, forming tools must be designed in order to manage the large spring back effect that high grade plates, such as those for X100 pipes, exhibits when the pipes go from the U-press to the O-press. The objective of this paper is to present the evaluation of X100 pipes inside the UOE process from TenarisConfab mill with a mathematic modeling to get the best parameters. The X100 production process has been analyzed via Finite Element Model to evaluate goodness of tools geometry and pipe mill capability to produce higher grades pipes.

2011 ◽  
Vol 368-373 ◽  
pp. 2711-2715 ◽  
Author(s):  
De Yun Ding ◽  
Xiu Ren Yang ◽  
Wei Dong Lu ◽  
Wei Ning Liu ◽  
Mei Yan ◽  
...  

In more and more complicated urban building environment, a new construction method that metro engineering is constructed by large-diameter shield and shallow mining method can be regarded as a great attempt in China. By taking the Gaojiayuan station of Beijing metro line 14 as an engineering background, the main construction steps for the platform of the metro station built by a large-size shield with an outer diameter of 10 m and the Pile-Beam-Arch (PBA) method are introduced. Based on the soil-structure interaction theory, a two-dimensional finite element model is used to simulate the shield tunneling and the platform construction by the PBA method to enlarge the shield tunnel. The ground deformation and structural stress of the platform are predicted. The numerical results can be regarded as a valuable reference for the application of the new construction method in Beijing metro line 14.


Author(s):  
Agnes Marie Horn ◽  
Mons Hauge ◽  
Per-Arne Ro̸stadsand ◽  
Bjarne Bjo̸rnbakk ◽  
Peer Dahlberg ◽  
...  

A large diameter high strength titanium free-hanging catenary riser was evaluated by the Demo 2000 Ti-Rise project, from initiative of the Kristin Field development license. In order to reduce the uncertainties related to the schedule, cost, and special technical issues identified in the work related to a similar riser for future installation on the A˚sgard B semi-submersible platform, a fabrication qualification of a full scale riser in titanium was run. Several full-scale production girth welds were made in an in-situ fabrication environment. The welding was performed on extruded titanium grade 23 (ASTM) pipes with an ID of 25.5″) and wall thickness of 30 mm. The main challenge was to develop a highly productive TIG orbital welding procedure, which produced welds with as low pore content as possible. It is well known that sub-surface pores often are initiation sits for fatigue cracks in high strength titanium welds. This paper describes how a greatly improved productivity was obtained in combination with a high weld quality. NDT procedures were developed whit the main on the reliability to detect and locate possible sub-surface weld defects, volumetric defects such as pores and tungsten particles and planar defects such as lack of fusion. The results from the actual Non Destructive Testing (NDT), the mechanical testing, and the fatigue testing of the subjected welds are presented. The response of the catenary is optimised by varied distribution of weight coating along the riser’s length. A satisfactory weight coating with sufficient strength, bond strength, and wear properties was developed and qualified. The riser is planned to be fabricated from extruded titanium pipes, welded together onshore to one continuous piece. The field coating is added and the riser is loaded into the sea and towed offshore and installed.


2013 ◽  
Vol 816-817 ◽  
pp. 897-900
Author(s):  
Bing Yang Huang ◽  
Huan Jie Wang

Based on main structural features of the high strength thrust bearing shells, ANSYS has been applied, in this paper, to establish a finite element model and simulate the combined stress and deformation of the high strength thrust bearing shells and connecting bolts between them. Simulation results show that strength of high strength thrust bearing shell and the connecting bolts between the shells can meet the design requirement of the structure form with heavy thrust load and high strength.


Alloy Digest ◽  
2018 ◽  
Vol 67 (9) ◽  

Abstract Ferrium M54 was designed to create a cost-effective, ultra high-strength, high-fracture toughness material with a high resistance to stress-corrosion cracking for use in structural applications. This datasheet provides information on composition, hardness, and tensile properties as well asfatigue. Filing Code: SA-822. Producer or source: QuesTek Innovations, LLC.


2021 ◽  
Vol 11 (5) ◽  
pp. 2225
Author(s):  
Fu Wang ◽  
Guijun Shi ◽  
Wenbo Zhai ◽  
Bin Li ◽  
Chao Zhang ◽  
...  

The steel assembled support structure of a foundation pit can be assembled easily with high strength and recycling value. Steel’s performance is significantly affected by the surrounding temperature due to its temperature sensitivity. Here, a full-scale experiment was conducted to study the influence of temperature on the internal force and deformation of supporting structures, and a three-dimensional finite element model was established for comparative analysis. The test results showed that under the temperature effect, the deformation of the central retaining pile was composed of rigid rotation and flexural deformation, while the adjacent pile of central retaining pile only experienced flexural deformation. The stress on the retaining pile crown changed little, while more stress accumulated at the bottom. Compared with the crown beam and waist beam 2, the stress on waist beam 1 was significantly affected by the temperature and increased by about 0.70 MPa/°C. Meanwhile, the stress of the rigid panel was greatly affected by the temperature, increasing 78% and 82% when the temperature increased by 15 °C on rigid panel 1 and rigid panel 2, respectively. The comparative simulation results indicated that the bending moment and shear strength of pile 1 were markedly affected by the temperature, but pile 2 and pile 3 were basically stable. Lastly, as the temperature varied, waist beam 2 had the largest change in the deflection, followed by waist beam 1; the crown beam experienced the smallest change in the deflection.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1063
Author(s):  
Catalina Hernández Moris ◽  
Maria Teresa Cerda Guevara ◽  
Alois Salmon ◽  
Alvaro Lorca

The energy sector in Chile demands a significant increase in renewable energy sources in the near future, and concentrated solar power (CSP) technologies are becoming increasingly competitive as compared to natural gas plants. Motivated by this, this paper presents a comparison between solar technologies such as hybrid plants and natural gas-based thermal technologies, as both technologies share several characteristics that are comparable and beneficial for the power grid. This comparison is made from an economic point of view using the Levelized Cost of Energy (LCOE) metric and in terms of the systemic benefits related to flexibility, which is very much required due to the current decarbonization scenario of Chile’s energy matrix. The results show that the LCOE of the four hybrid plant models studied is lower than the LCOE of the gas plant. A solar hybrid plant configuration composed of a photovoltaic and solar tower plant (STP) with 13 h of storage and without generation restrictions has an LCOE 53 USD/MWh, while the natural gas technology evaluated with an 85% plant factor and a variable fuel cost of 2.0 USD/MMBtu has an LCOE of 86 USD/MWh. Thus, solar hybrid plants under a particular set of conditions are shown to be more cost-effective than their closest competitor for the Chilean grid while still providing significant dispatchability and flexibility.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1209
Author(s):  
Xiang Chang ◽  
Wenzhi Fu ◽  
Mingzhe Li ◽  
Xintong Wang ◽  
Weifeng Yang ◽  
...  

Rolling technology based on arc-shaped rollers is a novel method for rapid manufacturing of 3D curved parts. The method uses a pair of arc-shaped rollers (a convex roller and a concave roller) as forming tools, forming an unevenly distributed roll gap. The sheet metal has both transverse bending and longitudinal uneven extension during rolling, so that surface parts with double curvature are processed. The curvature of the formed surface part can be changed by changing the rolling reduction. Changing the vertical distance between the rollers will cause the overall change of the roll gap height, which will inevitably have a great impact on the forming effect of formed 3D curved parts. In this paper, a finite element model and experiment with different rolling reductions was designed; the influence of rolling reduction on the bending deformation and shape accuracy of formed 3D curved parts was studied. The results show that, with the slight increase of rolling reduction (from 0.04 to 0.12 mm), the longitudinal bending deformation of the formed 3D curved part increases significantly, but its transversal bending is almost not affected. When the maximum rolling reduction is 0.04 and 0.06 mm (the corresponding minimum rolling reduction is less than or equal to zero), the shape accuracy of the formed 3D curved parts is not good enough; when the maximum rolling reduction is greater than 0.06 mm (the corresponding minimum rolling reduction is greater than zero), the shape accuracy of the formed 3D curved parts is significantly better. This indicates that, for the rolling of 3D curved parts based on arc-shaped rollers, ensuring that the minimum rolling reduction is greater than zero is the key to ensuring good shape accuracy of the formed 3D curved parts.


Sign in / Sign up

Export Citation Format

Share Document