Fatigue Test and Research on Tubular Joints of Concrete-Filled Steel Tube

2011 ◽  
Vol 368-373 ◽  
pp. 373-376
Author(s):  
Yan Diao

For the further study on stress concentration and fatigue property of tubular joints of concrete-filled steel, we designed the fatigue test on tubular joints of concrete-filled steel.Associating with the calculation of finite element, we studied the stress concentration, cracking source of fatigue, and fatigue -related rules including cracking expansion. I did the equivalent calculating under variable amplitude loading. We proposed the criterion of fatigue failure when surface length of penetrated crack is about 3 times as the thickness of the wall. According to the experiment we verified that the tubular joints under the amplitude load this criterion is reasonable, secure and feasible.

2012 ◽  
Vol 204-208 ◽  
pp. 930-933
Author(s):  
Xiao Hu ◽  
Zhen Lin Chen

The paper introduces 3 types of uniaxial stress-strain relationships of concrete filled steel tube by Pan Youguang, Susantha and Saenz, and performs finite element analyses of the axial strengths of 18 CTRC columns, studies the characters of three models, and comprises between the axial strengths from FEA and existed experiments. Results show these 3 types of model are all suitable for bearing analysis, but Pan’s model is more accurate.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhen Liu ◽  
Shibo Zhang

Seismic analysis of concrete-filled steel tube (CFST) arch bridge based on finite element method is a time-consuming work. Especially when uncertainty of material and structural parameters are involved, the computational requirements may exceed the computational power of high performance computers. In this paper, a seismic analysis method of CFST arch bridge based on artificial neural network is presented. The ANN is trained by these seismic damage and corresponding sample parameters based on finite element analysis. In order to obtain more efficient training samples, a uniform design method is used to select sample parameters. By comparing the damage probabilities under different seismic intensities, it is found that the damage probabilities of the neural network method and the finite element method are basically the same. The method based on ANN can save a lot of computing time.


2019 ◽  
Vol 23 (6) ◽  
pp. 1074-1086 ◽  
Author(s):  
Tao Zhu ◽  
Hongjun Liang ◽  
Yiyan Lu ◽  
Weijie Li ◽  
Hong Zhang

This article investigates the behaviour of slender concrete-filled steel tube square columns strengthened by concrete-filled steel tube jacketing. The columns were realised by placing a square outer steel tube around the original slender concrete-filled steel tube column and pouring strengthening concrete into the gap between the inner and outer steel tubes. Three concrete-filled steel tube square columns and seven retrofitted columns ranging from 1200 to 2000 mm were tested to failure under axial compression. The experimental parameters included three length-to-width ( L/ B1) ratios, three width-to-thickness ( B1/ t1) ratios and three strengths of concrete jacket (C50-grade, C60-grade and C70-grade). Experimentally, the retrofitted columns failed in a similar manner to traditional slender concrete-filled steel tube columns. After strengthening, the retrofitted columns benefitted greatly from the component materials, with their load-bearing capacity and ductility notably enhanced. These enhancements were mainly brought about by sectional enlargement and good confinement of concrete. A finite element model was developed using ABAQUS to better understand the axial behaviour of the retrofitted specimens. A parametric study was conducted, with parameters including the length of the column, thickness of the outer steel tube, strength of the concrete jacket, yield strength of the outer steel tube, thickness of the inner steel tube and strength of the inner concrete. Furthermore, the finite element model was adopted to study the behaviour of rust-damaged and post-fire slender concrete-filled steel tube square columns strengthened by square concrete-filled steel tube jacketing. A modified formula was proposed to predict the load-bearing capacity of retrofitted specimens, and the numerical results agreed well with the experiments and the finite element results of undamaged, rust-damaged and post-fire specimens. It could be used as a reference for practical application.


2019 ◽  
Vol 22 (11) ◽  
pp. 2490-2503 ◽  
Author(s):  
YT Zhang ◽  
B Shan ◽  
Y Xiao

Existing research on the widely used concrete-filled steel tubes is mainly focused on static or cyclic loading, and the studies on effects of high strain rate are relatively rare. In this article, seven stub concrete-filled steel tubular columns with square section were tested under both static and impact loads, using a large-capacity drop-weight testing machine. The research parameters were variable height of the drop-weight and different load types. The experimental results show that the failure modes of the concrete-filled steel tube columns from the impact tests are similar with those under static load, characterized by the local buckling of the steel tube. The time history curves of impact force and steel strain were investigated. The results indicate that with increasing impact energy, the concrete-filled steel tube stub columns had a stronger impact-resistant behavior. The dynamic analysis software LS-DYNA was employed to simulate the impact behaviors of the concrete-filled steel tube specimens, and the finite element results were reasonable compared with the test results. The parameter analysis on the impact behavior of concrete-filled steel tube columns was performed using the finite element model as well. A simple method was proposed to calculate the impact strength of square concrete-filled steel tube columns and compared favorably with experimental results.


2011 ◽  
Vol 243-249 ◽  
pp. 1988-1994 ◽  
Author(s):  
Zi Lin Li ◽  
Pei Yuan Zhou

Based on the finite element theory, the computational model, one through concrete filled steel tube tied-arch bridge was established under the considerations of both geometrical non-linearity and material non-linearity. And using the ANSYS software to study the bridge's arch rib construction process and the overall stability after the complete construction, the results show that the full-bridge’s stability coefficient are larger than other concrete-filled steel tube arch bridge; the in-plane stiffness is larger than the out-plane stiffness, and the influence of material non-linearity on the stability is notable. The results provide a good reference for the similar bridge's design and construction.


2013 ◽  
Vol 838-841 ◽  
pp. 428-431 ◽  
Author(s):  
Ying Wang ◽  
Miao Li ◽  
He Fan ◽  
Jin Hua Xu

Rational finite element models established by ABAQUS to analysis the mechanical properties of square steel tubular beam-column joints under low cyclic loading. The two beam-column joints are connected with bolts, one is with welding extended steel sheets at the beam root and the other has no welding extended steel sheets. The calculation and analysis results show that the new joint style using concrete filled steel tube structure both in beams and columns has advantage on the seismic performance. The load-displacement hysteresis curve of the beam end is plump without significant pinching and the joint specimens showed good ductility. The comparative analysis reveals that the joint with welding extended steel sheets at the beam root is more superior in the seismic performance respected to the joint without welding extended steel sheets.


2016 ◽  
Vol 851 ◽  
pp. 739-744
Author(s):  
Bo Li ◽  
Hong Gang Lei ◽  
Xu Yang

In this paper, the author uses ANSYS, the software of finite element analysis, to establish the finite element model, the hot spot stress value of different connection structures of steel tube-welded hollow sphere under uniaxial elongation has been analyzed, the theoretical stress concentration factor of this joint has been obtained. Through the static test on the four typical test-piece, 26 steel tube-welded hollow spherical nodes in total, the actually measured stress concentration factor of the joints has been obtained. The theoretical analysis basically coincides with the law of stress concentration factor obtained from the test results.


2012 ◽  
Vol 193-194 ◽  
pp. 1461-1464
Author(s):  
Bai Shou Li ◽  
Ai Hua Jin

Based on the characteristics of the special-shaped concrete-filled steel tubes and consideration of material nonlinearity of constitutive relation, stimulation of 6 T-shaped thin-walled ribbed and un-ribbed concrete-filled steel tube short columns is implemented, as well as comparable analysis of stress, strain, displacement and bearing capacity, through the finite element analysis software ANSYS. The result indicates that the rib can effectively improve the ductility, delaying the buckling occurs, which enhances the core concrete confinement effect, so as the stimulated ultimate bearing capacity which is greater than nominal ultimate bearing capacity.


Sign in / Sign up

Export Citation Format

Share Document