Experiment Research on Mechanical Behavior for Latticed Concrete-Filled Steel Tubular Tower with Three Limbs

2011 ◽  
Vol 368-373 ◽  
pp. 58-61 ◽  
Author(s):  
Bin Li ◽  
Zhong Zhou Han ◽  
Chun Yan Gao

Based on the 1.5MW cone cylinder wind turbine tower widely used at present, latticed concrete-filled steel tubular (CFST) tower with three limbs was designed. The stress mechanism and failure process, hysteretic properties, bearing capacity and energy dissipation capacity were studied by quasi-static test on the tower model. The results indicate that the hysteretic loops of the latticed CFST tower with three limbs present asymmetrical plump “spindle” and there is no obvious "pinch" phenomenon, which shows good seismic performance and energy dissipation capacity; and that owing to the latticed CFST tower with three limbs is asymmetric along the centroidal axis perpendicular to loading direction, plastic hinge finally appeared in the tower column foot which beared the largest force, the bottom web members were buckled and occur unstable failure. From the analysis it can be seen that the latticed CFST tower structure with three limbs has value of further research and promotion.

2012 ◽  
Vol 178-181 ◽  
pp. 179-183 ◽  
Author(s):  
Yang Wen

This paper refers to currently the 1.5MW cone tube type wind-driven generator tower, design the model of the concrete-filled steel tube wind turbine tower with three limb columns, and research on the force performance, such as the change of internal force, the process of failure, hysteretic behavior, bearing capacity, ductility and energy dissipation capacity by the pseudo-static experiment on the scale model of wind turbine tower. The study shows that the P- hysteretic curve of lattice concrete-filled steel tube wind-driven generator tower with three limb columns is asymmetric, relatively full “spindle” and the phenomenon of “knead shrink” is not obvious, which account for it has good force behavior and energy dissipation capacity. This kind of tower structure, of which the reverse bearing capacity is greater than the positive, and the reverse ductility coefficient is less than the positive, indicates that it’s reverse plastic deformation ability of the tower structure is weaker than it’s positive.


2013 ◽  
Vol 351-352 ◽  
pp. 174-178
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

With the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: when reached the ultimate strength, the strength degradation and stiffness degradation of joints are slowly and the ductility is also good, the energy dissipation capacity of joints is much better.


2010 ◽  
Vol 163-167 ◽  
pp. 398-405
Author(s):  
San Sheng Dong ◽  
Zi Xue Lei ◽  
Jun Hai Zhao

Based on the pseudo-static test of 6 high-strength RC columns with central reinforcement skeletons, this paper studied their hysterisis performance, degradation of strength and rigidity, and energy dissipation capacity, with the affecting factors analyzed. The result shows that the central reinforcement skeletons can compensate for the low plasticity and brittle failure susceptibility of high-strength concrete so that all the specimens have stable strength, slow rigidity degradation and high energy dissipation capacity at later stage of loading; the larger the core areas the higher the strengths and ductility of the specimens, but slightly faster the degradation of strength and energy dissipation capacity as compared with the specimens with smaller core areas; the spacing of ties, longitudinal reinforcement ratio of core area both influence the strength degradation and energy dissipation capacity of the specimens, but they have little effect on their strengths.


2012 ◽  
Vol 204-208 ◽  
pp. 2528-2532
Author(s):  
Ying Zi Yin ◽  
Yan Zhang

Joints are the forces cross points of members, and the bearing modes are more complex than other members, especially under earthquake action, so the rationality of joints are directly related to the safe reliability of structure. By the pseudo-static test of 4 concrete-filled square steel tubular column and steel beam joint with outer stiffened ring, this paper discusses the failure characteristics, failure mechanism and seismic behavior of joints under different axial compression ratio. The analysis of the testing results shows: the energy dissipation capacity of joints is much better, the degradation of strength and stiffness are slowly when reached the ultimate strength, and the ductility is also good.


2012 ◽  
Vol 517 ◽  
pp. 564-569
Author(s):  
Jin Song Fan ◽  
An Zhou ◽  
Li Hua Chen ◽  
Bing Kang Liu

Recycled concrete is a kind of new construction materials, and now received more and more attention from researchers and engineers, since its application in engineering projects can well cater to the increasing requirements of development for economic and environment-friendly society. Based on the pseudo static test of five recycled reinforcement concrete frame columns with different experimental axial compression ratios from 0.3 to 0.65, their failure modes, failure mechanism, hysteretic behavior, skeleton curves, bearing capacity, rigidity, ductility and energy dissipation capacity were discussed. Some possible influence factors and disciplines were also selected and analyzed. The study indicates that recycled reinforcement concrete frame columns in the case of relative low axial compression ratios usually exhibited similar and steady mechanical properties with common concrete columns. With the increase of axial compression ratio, its ductility and energy dissipation capacity are decreased and destruction forms tended to obvious brittle fracture, though its bearing capacity could slightly rise. The test results and analysis also manifest recycled concrete had expectative application potentials in most case.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Yingchao Ma ◽  
Jinqing Jia

The seismic behaviors of steel reinforced ultrahigh strength concrete (SRUHSC) frames with different axial compression ratios and shear span ratios are experimentally studied through the reversed cyclic loading test of four specimens. The test results reveal that the seismic response of the frame is closely related to the failure process and failure mode of the columns. Based on the results, a systematic exploration is further conducted in terms of the characteristics of the skeleton curve, hysteresis curve, strength degradation, stiffness degradation, and energy dissipation capacity of the structure. The results indicate that as the axial compression ratio increases, and the shear span ratio decreases, the failure process of the entire structure and the weakening of the beam end are accelerated. Meanwhile, a change of the failure mode is also observed, accompanied by corresponding changes in the strength, stiffness, and energy dissipation capacity of the system.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 6648-6667
Author(s):  
Xiaoli Han ◽  
Jian Dai ◽  
Wei Qian ◽  
Baolong Li ◽  
Yuanjun Jin ◽  
...  

The wooden columns in timber structures of ancient buildings have column foot tenons of various sizes. The main reason for these differences is their use for different roof loads. Six full-scale specimens with different sizes of column foot tenon were designed and manufactured. The tree species used for the specimens was larch. The quasi-static test was conducted on the specimens that were used in timber structures of ancient buildings. The effects of column foot tenon size on the mechanical properties of larch wooden columns were studied. The moment-rotational angle hysteretic curves, moment-rotational angle skeleton curves, ductility, stiffness degradation, energy dissipation capacity, slippages between the wooden column and the plinth, and the damage of the column foot tenons were examined. The test results showed that the column foot tenon played an important role in the mechanical behavior of the wooden column under low-cycle reversed cyclic loading. The rotation of the column foot tenon improved the energy dissipation capacity of the wooden column. As the rotational angle of the column base increased, the column foot tenon had different degrees of damage. Different sizes of column foot tenon had their own advantages and hysteretic behavior.


2020 ◽  
Vol 10 (10) ◽  
pp. 3406
Author(s):  
Fuyun Huang ◽  
Yulin Shan ◽  
Ahad Javanmardi ◽  
Xiaoye Luo ◽  
Baochun Chen

The flexural pile foundation is used in integral abutment jointless bridges (IAJBs) in practical engineering to effectively dissipate the horizontal reciprocating deformation induced by the ambient temperature or earthquake loadings. Various types of flexural piles including the H-shaped steel pile (HP), prestressed concrete pile (PC), prestressed high-strength concrete pile (PHC) as well as the reinforcement concrete pile (RC) have been implemented in IAJBs. However, there is a lack of comprehensive studies on the flexural deformation and seismic performances of these piles. In order to investigate and compare their mechanical behaviors and seismic performances, a low-cycle pseudo-static test on several different types of piles was carried out. The test results indicated that the plastic hinge location of piles moved to a deeper pile depth with the increase of reinforcement ratio, buried pile depth and prestressing level, which led to better pile–soil interaction. The crack resistance of a concrete pile was improved as the reinforcement ratio and prestressing level increased. Moreover, the rectangular pile had a better soil–pile interaction and energy dissipation capacity than the circular pile. The inflection point of the pile deformation shifted deeper as reinforcement ratio, buried pile depth and prestressing level increased, which improved the effective length and horizontal deformation capacity of piles. The H-shaped steel pile showed a better elastic-plastic deformation capacity, ductility and energy dissipation capacity as compared to the concrete pile. Moreover, the pile having a higher bearing ratio sustained larger lateral loads whereas the surrounding soil was subjected to higher loads. Finally, new seismic design criteria of three-stage seismic fortification and five damage level for the concrete piles of IAJBs were proposed.


Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 16
Author(s):  
Guohua Sun ◽  
Fei Li ◽  
Qiyou Zhou

This study aimed to study the cyclic behavior of two-side-connected precast-reinforced concrete infill panel (RCIP). A total of four RCIP specimens with different slit types and height-to-span ratios modeled at a one-third scale were tested subjected to cyclic lateral loads. The failure mode, hysteretic behavior, lateral strength, stiffness degradation, ductility, and energy dissipation capacity of each RCIP specimen were determined and analyzed. The specimens experienced a similar damage process, which involved concrete cracking, steel rebar yielding, concrete crushing, and plastic hinge formation. All the specimens showed pinched hysteretic curves, resulting in a small energy dissipation capacity and a maximum equivalent viscous damping ratio lower than 0.2. The specimens with penetrated slits experienced ductile failure, in which flexural hinges developed at both slit wall ends. The application of penetrated slits decreased the initial stiffness and lateral load-bearing capacity of the RC panel but increased the deformation capacity, the average ultimate drift ratios ranged from 1.41% to 1.99%, and the lowest average ductility ratio reached 2.48. The specimens with high-strength concrete resulted in a small slip no more than 1 mm between the RC panel and steel beam, and the channel shear connectors ensured that the RC infill panel developed a reliable assembly with the surrounding steel components. However, specimens with concealed vertical slits (CVSs) and concealed hollow slits (CHSs) achieved significantly higher lateral stiffness and lateral strength values. Generally, the specimens exhibited two-stage mechanical features. The concrete in the CVSs and CHSs was crushed, and flexural plastic hinges developed at both ends of the slit walls during the second stage. With increasing concrete strength, the initial lateral stiffness and lateral strength values of the RCIP specimens increased. With an increasing height-to-span ratio, the lateral stiffness and strength of the RC panels with slits decreased, but the failure mode remained unchanged.


2013 ◽  
Vol 838-841 ◽  
pp. 1145-1148
Author(s):  
Ming Bo Ding ◽  
Xing Chong Chen

In order to study the seismic performance of steel plate reinforcement on gravity piers in railway bridges, a quasi-static test was conducted on the 0.2% steel ratio pier model. Shearing damage on the pier model occurred on the action of horizontal load. Steel-bonded reinforcement was conducted on the damaged model, and comparison and analysis were made based on the failure mode, bearing capacity, ductility, energy dissipation capacity and stiffness degradation.


Sign in / Sign up

Export Citation Format

Share Document