Design of Coarse-Fine Combined Synchronization Control System for Lithography Based on Cross-Coupled Sliding Mode Control

2011 ◽  
Vol 383-390 ◽  
pp. 2126-2131
Author(s):  
Zhi Pen Wu ◽  
Xing Lin Chen

In order to achieve high position precision and synchronization between the wafer stage and the reticle stage, a cross-coupled sliding mode control scheme for a coarse-fine combined synchronization servo system of lithography is proposed. To accomplish high bandwidth and high tracking precision, a conventional linear motor is combined with a voice coil motor as a coarse-fine dual-stage control system. A cross-coupled structure is presented to decrease the synchronization error during scanning operation. Sliding mode control law is designed based on the control error and the synchronization error. Simulation results show that the synchronization error and the control error have the same order of magnitude, and the dynamic performance of the control system satisfies the design requirement.

Author(s):  
Bambang L. Widjiantoro ◽  
Katherin Indriawati

This paper proposes a scheme to improve regenerative ABS technology that already exists today by adding accommodation faults to the control system. The nominal control algorithm used is a sliding mode control so that system nonlinearities can be handled properly. The proposed method then is called sensor/actuator fault tolerant sliding mode control system. In designing the proposed control, there are two stages, namely estimation of faults, as well as the active mechanism for reconfiguring controls. Estimation of faults is done by using proportional-integral (PI) observers based on extended state space equation. Whereas the control signal reconfiguration is done actively by replacing measured output with their estimates and compensating for control signal using the actuator fault estimate. The simulation shows that the control system based on the proposed algorithm produces better dynamic performance than the sliding mode control (SMC) without fault tolerant feature. Furthermore, the system provides inherent characteristic for dealing with a minor fault in the hydraulic actuator.


2014 ◽  
Vol 971-973 ◽  
pp. 714-717 ◽  
Author(s):  
Xiang Shi ◽  
Zhe Xu ◽  
Qing Yi He ◽  
Ka Tian

To control wheeled inverted pendulum is a good way to test all kinds of theories of control. The control law is designed, and it based on the collaborative simulation of MATLAB and ADAMS is used to control wheeled inverted pendulum. Then, with own design of hardware and software of control system, sliding mode control is used to wheeled inverted pendulum, and the experimental results of it indicate short adjusting time, the small overshoot and high performance.


2011 ◽  
Vol 66-68 ◽  
pp. 1422-1427
Author(s):  
Ting You ◽  
Pei Jiang Li

For optimal control of synchronous machine, chattering phenomenon will appear if traditional slider control is adopted because permanent magnet synchronous machine is a complex nonlinear time-dependent system with strong coupling of current and rotational speed to cause the deterioration of system control performance with load or load disturbance. In this article, based on the mathematical model of permanent magnet synchronous machine, a control system for it, which combines sliding mode control and active disturbance rejection control, is proposed to improve the dynamic performance and robustness of control system. In the control system, sliding mode control is adopted to control the inner current of machine and active disturbance rejection control is adopted to control the outer speed. The load disturbance of system is also estimated and offset. The results of matlab simulation show that the control system can eliminate serious chattering phenomenon existing in sliding mode control, improves the robustness of system for load and system parameter disturbance as well as has great dynamic and static performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Dan-xu Zhang ◽  
Yang-wang Fang ◽  
Peng-fei Yang ◽  
You-li Wu ◽  
Tong-xin Liu

This paper proposed a finite time convergence global sliding mode control scheme for the second-order multiple models control system. Firstly, the global sliding surface without reaching law for a single model control system is designed and the tracking error finite time convergence and global stability are proved. Secondly, we generalize the above scheme to the second-order multimodel control system and obtain the global sliding mode control law. Then, the convergent and stable performances of the closed-loop control system with multimodel controllers are proved. Finally, a simulation example shows that the proposed control scheme is more effective and useful compared with the traditional sliding mode control scheme.


Author(s):  
Mohammad Amin Saeedi ◽  
Reza Kazemi ◽  
Shahram Azadi

In this paper, in order to improve the roll stability of an articulated vehicle carrying a liquid, an active roll control system is utilized by employing two different control methods. First, a 16-degree-of-freedom non-linear dynamic model of an articulated vehicle is developed. Next, the dynamic interaction of the liquid cargo with the vehicle is investigated by integrating a quasi-dynamic liquid sloshing model with a tractor–semitrailer model. Initially, to improve the lateral dynamic stability of the vehicle, an active roll control system is developed using classical integral sliding-mode control. The active anti-roll bar is employed as an actuator to generate the roll moment. Next, in order to verify the classical sliding-mode control performance and to eliminate its chattering, the backstepping method and the sliding-mode control method are combined. Subsequently, backstepping sliding-mode control as a new robust control is implemented. Moreover, in order to prevent both yaw instability and jackknifing, an active steering control system is designed on the basis of a simplified three-degree-of-freedom dynamic model of an articulated vehicle carrying a liquid. In the introduced system, the yaw rate of the tractor, the lateral velocity of the tractor and the articulation angle are considered as the three state variables which are targeted in order to track their desired values. The simulation results show that the combined proposed roll control system is more successful in achieving target control and reducing the lateral load transfer ratio than is classical sliding-mode control. A more detailed investigation confirms that the designed active steering system improves both the lateral stability of the vehicle and its handling, in particular during a severe lane-change manoeuvre in which considerable instability occurs.


Sign in / Sign up

Export Citation Format

Share Document