Three-Dimensional Numerical Simulation of Convective Melting of Solid Particles in a Fluid

1999 ◽  
Author(s):  
Y. L. Hao ◽  
Y.-X. Tao

Abstract A physical model of two-phase flow and heat-mass transfer with the phase changes based on the theory of interacting continua is proposed. All terms in the conservation equations are analyzed and the constitutive equations are presented. A closed set of governing equations describing the convective melting of solid particles in a fluid is obtained. The numerical method is developed for the solution of velocity, temperature, and volume fraction of solid phase for the three-dimensional melting in a rectangular cross-section channel. Preliminary calculation, including gravity effects, shows that the result is reasonable. This study provides a basis for the theoretical and experimental investigation of convective melting of solid particles in a fluid.

Author(s):  
Hisanori Yagami ◽  
Tomomi Uchiyama

The behavior of small solid particles falling in an unbounded air is simulated. The particles, initially arranged within a spherical region in a quiescent air, are made to fall, and their fall induces the air flow around them, resulting in the gas-particle two-phase flow. The particle diameter and density are 1 mm and 7.7 kg/m3 respectively. A three-dimensional vortex method proposed by one of the authors is applied. The simulation demonstrates that the particles are accelerated by the induced downward air flow just after the commencement of their fall. It also highlights that the particles are whirled up by a vortex ring produced around the downward air flow after the acceleration. The effect of the particle volume fraction at the commencement of the fall is also explored.


Author(s):  
Kaushik Das ◽  
Debashis Basu ◽  
Todd Mintz

The present study makes a comparative assessment of different turbulence models in simulating the flow-assisted corrosion (FAC) process for pipes with noncircular cross sections and bends, features regularly encountered in heat exchangers and other pipeline networks. The case study investigates material damage due to corrosion caused by dissolved oxygen (O2) in a stainless steel pipe carrying an aqueous solution. A discrete solid phase is also present in the solution, but the transport of the solid particles is not explicitly modeled. It is assumed that the volume fraction of the solid phase is low, so it does not affect the continuous phase. Traditional two-equation models are compared, such as isotropic eddy viscosity, standard k-ε and k-ω models, shear stress transport (SST) k-ω models, and the anisotropic Reynolds Stress Model (RSM). Computed axial and radial velocities, and turbulent kinetic energy profiles predicted by the turbulence models are compared with available experimental data. Results show that all the turbulence models provide comparable results, though the RSM model provided better predictions in certain locations. The convective and diffusive motion of dissolved O2 is calculated by solving the species transport equations. The study assumes that solid particle impingement on the pipe wall will completely remove the protective film formed by corrosion products. It is also assumed that the rate of corrosion is controlled by diffusion of O2 through the mass transfer boundary layer. Based on these assumptions, corrosion rate is calculated at the internal pipe walls. Results indicate that the predicted O2 corrosion rate along the walls varies for different turbulence models but show the same general trend and pattern.


2021 ◽  
pp. 1-25
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract In recent decades, increasing attention has been focused on accurate modeling of circulating fluidized bed (CFB) risers to provide valuable guidance to design, optimization and operation of reactors. Turbulence model plays an important role in accurate prediction of complex gas-solid flows. Recently developed Wray-Agarwal (WA) model is a one-equation turbulence model with the advantages of high computational efficiency and competitive accuracy with two-equation models. In this paper for the first time, Eulerian-Eulerian approach coupled with different turbulence models including WA model, standard κ-ε model and shear stress transport (SST) κ-ω model is employed to simulate two-phase flows of gas phase and solid phase in two CFB risers, in order to assess accuracy and efficiency of WA model compared to other well-known two-equation models. Predicted gas-solid flow dynamic characteristics including the gas-solid volume fraction distributions in radial and axial directions, pressure profiles and solid mass flux distributions are compared with data obtained from experiment in detail. The results demonstrate WA model is very promising for accurate and efficient simulation of gas-solid multiphase flows.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Mohammad Yaghoub Abdollahzadeh Jamalabadi ◽  
Rasoul Kazemi ◽  
Mohammad Ghalandari

Abstract In this study, numerical simulation of formation of droplet within T-shaped microchannel is investigated. Three-dimensional, transient and two-phase numerical solution for four different microchannels with different stepping positions in the flow path was performed. Various parameters such as volume fraction, Nusselt number, pressure, Reynolds number, and temperature are discussed. The results show that the location of stepped barriers in the flow path affects the process of droplet formation, its number and size in the microchannel and should be considered as an important factor in determining the fluid behavior in the microchannel. It was observed that by placing half of the step at the entrance and the other half after the entrance, the continuous phase (S3 mode) was formed in 37.5 s compared to the other modes. The droplets were also smaller in size and more in numbers. It was also observed that the maximum value for the Nusselt number was obtained for the S2 mode where the step was located just above the discrete-phase entrance. In addition, the pressure at the inlet was higher and the flow velocity increased after the step and its pressure decreased, and continued to decrease due to frictional path.


2020 ◽  
Author(s):  
Nicholas S. Tavouktsoglou ◽  
Aggelos Dimakopoulos ◽  
Jeremy Spearman ◽  
Richard J. S. Whitehouse

Abstract Submerged water jet causing soil excavation is a typical water-soil interaction process that occurs widely in many engineering disciplines. In hydraulic engineering for instance, a typical example would be scour downstream of headcuts, culverts, or dam spillways. In port and waterway engineering, erosion of the channel bed or quay wall by the propellers of passing ships are also typical water jet/soil interaction problems. In ocean engineering, trenching by impinging high-velocity water jets has been used as an efficient method for cable and pipeline burial. At present, physical modelling and simple prediction equations have been the main practical engineering tool for evaluating scour in these situations. However, with the increasing computational power of modern computers and the development of new Computational Fluid Dynamics (CFD) solvers, scour prediction in such engineering problems has become possible. In the present work three-dimensional (3D) numerical modelling has been applied to reproduce the capability of a pair of water jets to backfill an excavated trench. The simulations are carried out using a state-of-the-art three-dimensional Eulerian two-phase scour model based on the open source CFD software OpenFOAM. The fluid phase is resolved by solving modified Navier-Stokes equations, which take into consideration the influence of the solid phase, i.e., the soil particles. This paper first presents a validation of the numerical model against vertical jet erosion tests from the literature and conducted at HR Wallingford. The results of the model show good agreement with the experimental tests, with the numerical model predicting the scour hole depth and extent with good accuracy. The paper then presents a validation of the model’s ability to reproduce deposition which is evaluated through a comparison with settling velocity data and empirical formulations found in literature, again with the model showing good agreement. Finally, the model is applied to a prototype cable burial problem using a commercially available controlled flow jet excavator. The study found that the use of water jets can be effective (subject to confirmation of the time-scale required for real operations) for performing backfill operations but that the effectiveness is closely related to the type of sediment and selection of an appropriate jet discharge. As a result, in order for the water jet method to be effective for backfill, there is a requirement for a good description of the variation in sediment type along the trench and a requirement for the jet discharge to be varied as different sediment types are encountered.


2019 ◽  
Vol 962 ◽  
pp. 210-217
Author(s):  
Yong Ming Guo ◽  
Nozomi Fukae

It is well known that the properties of materials are a function of their microstructural parameters. The FEM is a good selection for studies of three-dimensional microstructure-property relationships. In this research, the elastic-plastic micromechanical response of the particle volume fraction of two-phase materials have been calculated using a commercial software package of the FEM, some new knowledges on the microstructure-property relationships have obtained.


Author(s):  
Nariman Ashrafi ◽  
Mohammad Reza Ansari ◽  
Armin Chegini ◽  
Ali Sadeghi

In this article, two-phase slug regime in a duct with rectangular cross-section is investigated numerically, using the volume of fluid (VOF) method. Equations of mass, momentum and advection of volume fraction are solved accompanying k-∈ realizable turbulence equations. To ensure the creditability, numerical results have been compared with experimental results using same geometry. With occurrence of instability in the entrance of duct, Kelvin-Helmholtz condition satisfies and with increasing instability, slug phenomenon occurs. With closing the cross-section of duct, slug causes pressure gradient in it. Trapped air behind a slug transfers the momentum and increases the kinetic energy of slug. In this research the kinetic energy of a slug is investigated.


2014 ◽  
Vol 62 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Gianandrea Vittorio Messa ◽  
Stefano Malavasi

Abstract The flow of a mixture of liquid and solid particles at medium and high volume fraction through an expansion in a rectangular duct is considered. In order to improve the modelling of the phenomenon with respect to a previous investigation (Messa and Malavasi, 2013), use is made of a two-fluid model specifically derived for dense flows that we developed and implemented in the PHOENICS code via user-defined subroutines. Due to the lack of experimental data, the two-fluid model was validated in the horizontal pipe case, reporting good agreement with measurements from different authors for fully-suspended flows. A 3D system is simulated in order to account for the effect of side walls. A wider range of the parameters characterizing the mixture (particle size, particle density, and delivered solid volume fraction) is considered. A parametric analysis is performed to investigate the role played by the key physical mechanisms on the development of the two-phase flow for different compositions of the mixture. The main focuses are the distribution of the particles in the system and the pressure recovery


2015 ◽  
Vol 741 ◽  
pp. 531-535
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents the numerical analysis of erosive wear on the guide vanes of a Francis turbine using CFD code. The 3-D turbulent particulate-liquid two-phase flow equations are employed in this study. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that the volume fraction of sand at the top of the guide vanes is higher than others and the maximum of volume fraction of sand is at same location with the maximum of sand erosion rate density. The erosive wear is more serious at the top of the guide vanes.


1995 ◽  
Vol 05 (02) ◽  
pp. 191-211 ◽  
Author(s):  
LIONEL SAINSAULIEU

We consider a cloud of solid particles in a gas flow. The cloud is described by a probability density function which satisfies a kinetic equation. The gas flow is modeled by Navier-Stokes equations. The two phases exchange momentum and energy. We obtain the entropy balance of the gas flow and deduce some bounds for the volume fraction of the gas phase. Writing the entropy balance for the dispersed phase enables one to determine the particles equilibrium velocity distribution function when the gas flow is known.


Sign in / Sign up

Export Citation Format

Share Document