A Study on the Effect of Process Parameters on Surface Topography of Al Thin Films on Various Substrates Using AFM

2011 ◽  
Vol 383-390 ◽  
pp. 903-908
Author(s):  
S. Shanmugan ◽  
D. Mutharasu ◽  
Z. Hassan ◽  
H. Abu. Hassan

Al thin films were prepared over different substrates at various process conditions using DC sputtering. The surface topography of all prepared films was examined using AFM technique. Very smooth, uniform and dense surface were observed for Al films coated over Glass substrates. The observed particle size was nano scale (20 -70 nm) for Glass substrates. Sputtering power showed immense effect on surface roughness with respective to Ar gas flow rate. Noticeable change on surface with large particles was observed in Copper substrates at various sputtering power and gas flow rate.

2012 ◽  
Vol 37 (2) ◽  
pp. 165-168 ◽  
Author(s):  
Iping Suhariadi ◽  
Naho Itagaki ◽  
Kazunari Kuwahara ◽  
Koichi Oshikawa ◽  
Daisuke Yamashita ◽  
...  

2008 ◽  
Vol 202 (22-23) ◽  
pp. 5259-5261 ◽  
Author(s):  
Yongsup Yun ◽  
Takanori Yoshida ◽  
Norifumi Shimazu ◽  
Naoki Nanba ◽  
Yasushi Inoue ◽  
...  
Keyword(s):  
Gas Flow ◽  

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1635
Author(s):  
Md. Akhtaruzzaman ◽  
Md. Shahiduzzaman ◽  
Nowshad Amin ◽  
Ghulam Muhammad ◽  
Mohammad Aminul Islam ◽  
...  

Tungsten disulfide (WS2) thin films were deposited on soda-lime glass (SLG) substrates using radio frequency (RF) magnetron sputtering at different Ar flow rates (3 to 7 sccm). The effect of Ar flow rates on the structural, morphology, and electrical properties of the WS2 thin films was investigated thoroughly. Structural analysis exhibited that all the as-grown films showed the highest peak at (101) plane corresponds to rhombohedral phase. The crystalline size of the film ranged from 11.2 to 35.6 nm, while dislocation density ranged from 7.8 × 1014 to 26.29 × 1015 lines/m2. All these findings indicate that as-grown WS2 films are induced with various degrees of defects, which were visible in the FESEM images. FESEM images also identified the distorted crystallographic structure for all the films except the film deposited at 5 sccm of Ar gas flow rate. EDX analysis found that all the films were having a sulfur deficit and suggested that WS2 thin film bears edge defects in its structure. Further, electrical analysis confirms that tailoring of structural defects in WS2 thin film can be possible by the varying Ar gas flow rates. All these findings articulate that Ar gas flow rate is one of the important process parameters in RF magnetron sputtering that could affect the morphology, electrical properties, and structural properties of WS2 thin film. Finally, the simulation study validates the experimental results and encourages the use of WS2 as a buffer layer of CdTe-based solar cells.


2011 ◽  
Vol 687 ◽  
pp. 706-710 ◽  
Author(s):  
Xing Ao Li ◽  
Jian Ping Yang ◽  
Yong Tao Li ◽  
Li Xia Wang ◽  
Hai Yun Wang

Copper nitride thin films were deposited on glass substrates by reactive DC magnetron sputtering at various N2-gas flow rates and different substrate temperature. X-ray diffraction measurements show that the films are composed of Cu3N crystallites with anti-ReO3structure and exhibit preferential orientation to the [111] and [100]. The preferred crystalline orientation of the films changes with the N2-gas flow rate and substrate temperature. The N2-gas flow rate and the substrate temperature not only affect the crystal structure of films but also affect the deposition rate, the resistivity and the microhardness of the Cu3N films.


2017 ◽  
Vol 62 (2) ◽  
pp. 1119-1124
Author(s):  
B. Ali ◽  
S.H. Choi ◽  
S.J. Seo ◽  
D.Y. Maeng ◽  
C.G. Lee ◽  
...  

AbstractThe water atomization of iron powder with a composition of Fe-3Cr-0.5Mo (wt.%) at 1600°C and 150 bar creates an oxide layer, which in this study was reduced using a mixture of methane (CH4) and argon (Ar) gas. The lowest oxygen content was achieved with a 100 cc/min flow rate of CH4, but this also resulted in a co-deposition of carbon due to the cracking of CH4. This carbon can be used directly to create high-quality, sinter hardenable steel, thereby eliminating the need for an additional mixing step prior to sintering. An exponential relationship was found to exist between the CH4gas flow rate and carbon content of the powder, meaning that its composition can be easily controlled to suit a variety of different applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Bong Ju Lee ◽  
Ho Jun Song ◽  
Jin Jeong

Al-doped zinc-oxide (AZO) thin films were prepared by RF magnetron sputtering at different oxygen partial pressures and substrate temperatures. The charge-carrier concentrations in the films decreased from 1.69 × 1021to 6.16 × 1017 cm−3with increased gas flow rate from 7 to 21 sccm. The X-ray diffraction (XRD) patterns show that the (002)/(103) peak-intensity ratio decreased as the gas flow rate increased, which was related to the increase of AZO thin film disorder. X-ray photoelectron spectra (XPS) of the O1s were decomposed into metal oxide component (peak A) and the adsorbed molecular oxygen on thin films (peak B). The area ratio of XPS peaks (A/B) was clearly related to the stoichiometry of AZO films; that is, the higher value of A/B showed the higher stoichiometric properties.


2007 ◽  
Vol 1057 ◽  
Author(s):  
Yoshiyuki Suda ◽  
Junichi Takayama ◽  
Takeshi Saito ◽  
Atsushi Okita ◽  
Junji Nakamura ◽  
...  

ABSTRACTWe report the effect of CO2 addition to CO4 gas on carbon nanotube (CNT) growth by chemical vapor deposition. CO2 gas was introduced during the growth of CNTs on Fe0.05Mo0.025MgO0.925 and Ni0.05Mo0.025MgO0.925 catalysts by CO4 gas at a temperature of 800–850°C, and its concentration in a fraction of the gas flow rate was varied from 5×10−3 to 50%. In the experimental condition of the preferential growth of multi-walled CNTs, the carbon yield and the G/D ratio in the Raman spectra of the CNTs grown in 10%-CO2/CO4 were slightly higher than that grown in CO4 only. However, CNTs hardly grew when the CO2 concentration was more than 10%. We then prepared CO2 gas diluted with Ar gas (CO2/Ar) and varied its flow rate between 0 and 10 sccm. As the CO2/Ar gas flow rate was increased, the number of RBM peaks decreased even though the G/D ratio gradually decreased. The decrease in the RBM intensities of CNTs on the FeMoMgO catalyst was more significant than that of NiMoMgO.


2014 ◽  
Vol 970 ◽  
pp. 128-131
Author(s):  
Ong Wai Kit ◽  
Karim bin Deraman ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Jackie Chen Keng Yik

Diamond like carbon (DLC) thin films were grown onto glass substrates by using direct current plasma enhance chemical vapour deposition (DC-PECVD) system. Films were deposited under fixed deposition pressure (4 x 10-1 Torr), substrate temperature (500°C) and deposition time (3 hours) but with different flow rate of precursor gas (methane, hydrogen and argon). The fabricated films were characterized by using x-ray diffraction (XRD) and atomic force microscopy (AFM). XRD has revealed that the DLC films were having amorphous phase as the XRD spectrum did not show any obvious sharp peak. From AFM, it was discovered that the precursor gas flow rate has inversely relationship with the grain size and surface roughness of films.


Sign in / Sign up

Export Citation Format

Share Document