Simulation Research on Synthesis Algorithm of Directional Illumination Data

2011 ◽  
Vol 403-408 ◽  
pp. 2337-2340
Author(s):  
Shu Cong Liu ◽  
Yan Xing Song ◽  
Jing Song Yang

Seismic illumination analysis was an effective means of recognizing and studying the energy distributions in the underground geological structure in seismic data acquisition. Effective seismic illumination analysis to a priori targeted-geological model to identify the energy distribution of seismic waves, can apply to seismic analysis and amplitude compensation analysis. To increase the signal to noise ratio and resolution of seismic data when vibrator seismic exploration, it was necessary to strengthen the energy of a certain direction to get the High-Precision imaging and the best illumination of the target areas.Simulation research were done on single source directional illumination seismic technology, with seismic illumination analysis, and the impact of source number, spacing change on directional illumination seismic technology were also analyzed. Simulation results showed that the directional seismic technology could improved SNR of seismic data, and could be used for seismic signal processing.

2021 ◽  
Author(s):  
Vladimir Cheverda ◽  
Vadim Lisitsa ◽  
Maksim Protasov ◽  
Galina Reshetova ◽  
Andrey Ledyaev ◽  
...  

Abstract To develop the optimal strategy for developing a hydrocarbon field, one should know in fine detail its geological structure. More and more attention has been paid to cavernous-fractured reservoirs within the carbonate environment in the last decades. This article presents a technology for three-dimensional computing images of such reservoirs using scattered seismic waves. To verify it, we built a particular synthetic model, a digital twin of one of the licensed objects in the north of Eastern Siberia. One distinctive feature of this digital twin is the representation of faults not as some ideal slip surfaces but as three-dimensional geological bodies filled with tectonic breccias. To simulate such breccias and the geometry of these bodies, we performed a series of numerical experiments based on the discrete elements technique. The purpose of these experiments is the simulation of the geomechanical processes of fault formation. For the digital twin constructed, we performed full-scale 3D seismic modeling, which made it possible to conduct fully controlled numerical experiments on the construction of wave images and, on this basis, to propose an optimal seismic data processing graph.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. A19-A24 ◽  
Author(s):  
Aleksander S. Serdyukov ◽  
Aleksander V. Yablokov ◽  
Anton A. Duchkov ◽  
Anton A. Azarov ◽  
Valery D. Baranov

We have addressed the problem of estimating surface-wave phase velocities through the spectral processing of seismic data. This is the key step of the well-known near-surface seismic exploration method, called multichannel analysis of surface waves. To increase the accuracy and ensure the unambiguity of the selection of dispersion curves, we have developed a new version of the frequency-wavenumber ([Formula: see text]-[Formula: see text]) transform based on the S-transform. We obtain the frequency-time representation of seismic data. We analyze the obtained S-transform frequency-time representation in a slant-stacking manner but use a spatial Fourier transform instead of amplitude stacking. Finally, we build the [Formula: see text]-[Formula: see text] image by analyzing the spatial spectra for different steering values of the surface-wave group velocities. The time localization of the surface-wave packet at each frequency increases the signal-to-noise ratio because of an exclusion of noise in other time steps (which does not fall in the effective width of the corresponding wavelet). The new [Formula: see text]-[Formula: see text] transform, i.e., the slant [Formula: see text]-[Formula: see text] (SFK) transform, renders a better spectral analysis than the conventional [Formula: see text]-[Formula: see text] transform and yields more accurate phase-velocity estimation, which is critical for the surface-wave analysis. The advantages of the SFK transform have been confirmed by synthetic- and field-data processing.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. V137-V148 ◽  
Author(s):  
Pierre Turquais ◽  
Endrias G. Asgedom ◽  
Walter Söllner

We have addressed the seismic data denoising problem, in which the noise is random and has an unknown spatiotemporally varying variance. In seismic data processing, random noise is often attenuated using transform-based methods. The success of these methods in denoising depends on the ability of the transform to efficiently describe the signal features in the data. Fixed transforms (e.g., wavelets, curvelets) do not adapt to the data and might fail to efficiently describe complex morphologies in the seismic data. Alternatively, dictionary learning methods adapt to the local morphology of the data and provide state-of-the-art denoising results. However, conventional denoising by dictionary learning requires a priori information on the noise variance, and it encounters difficulties when applied for denoising seismic data in which the noise variance is varying in space or time. We have developed a coherence-constrained dictionary learning (CDL) method for denoising that does not require any a priori information related to the signal or noise. To denoise a given window of a seismic section using CDL, overlapping small 2D patches are extracted and a dictionary of patch-sized signals is trained to learn the elementary features embedded in the seismic signal. For each patch, using the learned dictionary, a sparse optimization problem is solved, and a sparse approximation of the patch is computed to attenuate the random noise. Unlike conventional dictionary learning, the sparsity of the approximation is constrained based on coherence such that it does not need a priori noise variance or signal sparsity information and is still optimal to filter out Gaussian random noise. The denoising performance of the CDL method is validated using synthetic and field data examples, and it is compared with the K-SVD and FX-Decon denoising. We found that CDL gives better denoising results than K-SVD and FX-Decon for removing noise when the variance varies in space or time.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. U53-U63 ◽  
Author(s):  
Andrea Tognarelli ◽  
Eusebio Stucchi ◽  
Alessia Ravasio ◽  
Alfredo Mazzotti

We tested the properties of three different coherency functionals for the velocity analysis of seismic data relative to subbasalt exploration. We evaluated the performance of the standard semblance algorithm and two high-resolution coherency functionals based on the use of analytic signals and of the covariance estimation along hyperbolic traveltime trajectories. Approximate knowledge of the wavelet was exploited to design appropriate filters that matched the primary reflections, thereby further improving the ability of the functionals to highlight the events of interest. The tests were carried out on two synthetic seismograms computed on models reproducing the geologic setting of basaltic intrusions and on common midpoint gathers from a 3D survey. Synthetic and field data had a very low signal-to-noise ratio, strong multiple contamination, and weak primary subbasalt signals. The results revealed that high-resolution coherency functionals were more suitable than semblance algorithms to detect primary signals and to distinguish them from multiples and other interfering events. This early discrimination between primaries and multiples could help to target specific signal enhancement and demultiple operations.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T331-T342
Author(s):  
Xing-Wang Li ◽  
Bing Zhou ◽  
Chao-Ying Bai ◽  
Jian-Lu Wu

In a viscoelastic anisotropic medium, velocity anisotropy and wave energy attenuation occur and are often observed in seismic data applications. Numerical investigation of seismic wave propagation in complex viscoelastic anisotropic media is very helpful in understanding seismic data and reconstructing subsurface structures. Seismic ray tracing is an effective means to study the propagation characteristics of high-frequency seismic waves. Unfortunately, most seismic ray-tracing methods and traveltime tomographic inversion algorithms only deal with elastic media and ignore the effect of viscoelasticity on the seismic raypath. We have developed a method to find the complex ray velocity that gives the seismic ray speed and attenuation in an arbitrary viscoelastic anisotropic medium, and we incorporate them with the modified shortest-path method to determine the raypath and calculate the real and imaginary traveltime (wave energy attenuation) simultaneously. We determine that the complex ray-tracing method is applicable to arbitrary 2D/3D viscoelastic anisotropic media in a complex geologic model and the computational errors of the real and imaginary traveltime are less than 0.36% and 0.59%, respectively. The numerical examples verify that the new method is an effective and powerful tool for accomplishing seismic complex ray tracing in heterogeneous viscoelastic anisotropic media.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. V11-V25 ◽  
Author(s):  
Weilin Huang ◽  
Runqiu Wang

Improving the signal-to-noise ratio (S/N) of seismic data is desirable in many seismic exploration areas. The attenuation of random noise can help to improve the S/N. Geophysicists usually use the differences between signal and random noise in certain attributes, such as frequency, wavenumber, or correlation, to suppress random noise. However, in some cases, these differences are too small to be distinguished. We used the difference in planar morphological scales between signal and random noise to separate them. The planar morphological scale is the information that describes the regional shape of seismic waveforms. The attenuation of random noise is achieved by removing the energy in the smaller morphological scales. We call our method planar mathematical morphological filtering (PMMF). We analyze the relationship between the performance of PMMF and its input parameters in detail. Applications of the PMMF method to synthetic and field post/prestack seismic data demonstrate good performance compared with competing alternative techniques.


2020 ◽  
Vol 46 (2) ◽  
pp. 93
Author(s):  
Jan Barmuta ◽  
Monika Korbecka ◽  
Piotr Hadro ◽  
Krzysztof Pieniądz ◽  
Michał Stefaniuk ◽  
...  

An attempt was made to describe the quality of the stacked seismic data semi-quantitatively with respect to the spacing of shot and receiver lines. The methods used included: signal-to-noise ratio calculation, seismic-to-well tie accuracy, wavelet extraction effectiveness and reliability of semi-automated interpretation of seismic attributes. This study was focused on the Ordovician-Silurian interval of the Lublin Basin, Poland, as it was considered as a main target for the exploration of unconventional hydrocarbon deposits. Our results reconfirm the obvious dependency between the density of the acquisition parameters and data quality. However, we also discovered that the seismic data quality is less affected by the shot line spacing than by comparable receiver line spacing. We attributed this issue to the fact of the higher irregularity of the shot points than receiver points, imposed by the terrain accessibility. We have also proven that the regularity of receiver and shot point distributionis crucial for the reliable interpretation of structural seismic attributes, since these were found to be highly sensitive to the acquisition geometry.


1978 ◽  
Vol 18 (1) ◽  
pp. 116
Author(s):  
E. G. Selby

There are many limitations in the ultimate accuracy of a conventional two dimensional seismic survey. One of the most important of these is that, in general, a prospect is not a two dimensional model but a three dimensional one. For a complete interpretation of a prospect area the final result should be a migrated time or depth map. With limited sampling (a seismic grid typically consists of loops with dimensions at least 1 km by 1 km) it is necessary to interpolate grid points to allow map migration and this method has inherent inaccuracies.The three dimensional seismic exploration technique is designed to provide a sufficiently close sampled grid of seismic traces, typically with a line and depth point spacing as close as 50-100 m, to allow the seismic data itself to be migrated three dimensionally. This allows the interpreter to work with migrated seismic sections and to contour directly the migrated map.Several techniques exist to allow practical and economic collection of seismic data to provide this close sampling. These techniques can be adapted to various terrain and cultural conditions.The main advantages of three dimensional data collection are correct imaging of the seismic information giving true vertical reflection time sections and improved signal-to-noise ratio due to the increased fold inherent in the three dimensional migration process. The additional advantage to the interpreter is that the data has a sampling which gives a line intersection at each depth point in the prospect.


2015 ◽  
Vol 12 (4) ◽  
Author(s):  
Bogdan Nita ◽  
Christopher Smith

We test the capability of an inverse scattering algorithm for imaging noisy seismic data. The algorithm does not require a velocity model or any other a priori information about the medium under investigation. We use three different geometries which capture different types of one-dimensional media with variable velocity. We show that the algorithm can precisely locate the interfaces and discover the correct velocity changes at those interfaces under moderate noise condition. When the signal to noise ratio is too small, the data is de-noised using a threshold filter and then imaged with excellent results. KEYWORDS: Seismic Imaging, Inversion, Amplitude Correction, Scattering Theory, Noise, Threshold Filter. 2000 MATHEMATICS SUBJECT CLASSIFICATION 86A22, 35J05, 35R30.


2020 ◽  
Vol 8 (4) ◽  
pp. SS87-SS96
Author(s):  
Bo Yang ◽  
Zhan Liu ◽  
Kaijun Xu

We have used the integrated interpretation of gravity, magnetotelluric (MT) data, and seismic data to improve the structural imaging of the Dayangshu Basin. The Dayangshu Basin is mainly composed of clastic and volcanic rocks. The logging data in the basin show different degrees of direct hydrocarbon indication, suggesting that the Dayangshu Basin has good potential for exploration. However, the widely distributed volcanic rocks attenuate seismic waves and lead to poor seismic imaging. Thus, the seismic signal is weak in the Ganhe Formation (K1g) and reliable seismic images cannot be obtained below that formation. MT data can accurately obtain images of deep structures because the resistivity of volcanic rocks is significantly higher than that of sedimentary rocks. Therefore, to obtain a more reliable geologic model, we combine the traditional 3D MT inversion result with logging and seismic data to establish an initial model. The 3D MT fuzzy constrained inversion (FCI) produces a more reliable geophysical model and geologically meaningful results. The resistivity model inverted from FCI shows that volcanic rocks are widely distributed in the Ganhe Formation, and the resistivity value of the lower section of the Longjiang Formation is greater than that of the upper section of the Longjiang Formation. Finally, the 3D gravity inversion with structural constraints from 3D MT FCI method was performed to improve the model resolution in depth and to highlight the density variations within the Jiufengshan Formation, which can further optimize the geologic model. We have determined how the effective integration of gravity, MT, and seismic data can improve the structural imaging of the Dayangshu Basin.


Sign in / Sign up

Export Citation Format

Share Document