Low-Frequency Damping Behavior of Porous Magnesium

2011 ◽  
Vol 415-417 ◽  
pp. 2002-2007
Author(s):  
Gang Ling Hao ◽  
Qiao Ping Xu ◽  
Fu Sheng Han

The well-distributed porous magnesium was prepared through powder metallurgy route basing on space-holding method. The damping behavior of the porous magnesium was characterized by internal friction and measured by a multi-function internal friction apparatus. Experimental results revealed that the damping capacity of the porous magnesium was increased compared to that of the bulk magnesium, which can be understood by a dislocation damping mechanism associated with an inhomogeneous stress and strain distribution around the pores. In addition, an internal friction peak was observed in the spectra of internal friction against temperature. It was suggested that the dislocation sliding arising from a thermal activation process should be responsible for the peak appearance.

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2392-2397 ◽  
Author(s):  
JIANG JIANG ◽  
LISHAN CUI ◽  
YANJUN ZHENG ◽  
TINGYONG XING ◽  
XINGQING ZHAO ◽  
...  

The present work aims to investigate the internal friction and effect of pre-deformation on damping capacity of Nb 60 Ti 25 Ni 15 alloy, which could be considered as TiNi / NbTi metal matrix composite. The internal friction results showed that this composite possesses excellent damping behavior, which is associated with the movement of a set of abundant interfaces, such as those between the TiNi and NbTi phases, those between martensitic variants and those between martensite and parent phase. Meanwhile, the peak temperature and the width of the internal peak increased with increasing of prestrain level. It appears to be due to the release of the stored elastic strain energy, or the pinning effect by the deformed structures. Furthermore, the height of internal friction peak decreased as the prestrain level increased.


2011 ◽  
Vol 66-68 ◽  
pp. 1155-1162
Author(s):  
Jian Ning Wei ◽  
Gen Mei Li ◽  
Li Ling Zhou ◽  
Xue Yun Zhou ◽  
Jian Min Yu ◽  
...  

A large number of macroscopic pores were introduced into commercially pure aluminum (Al) and Zn-Al eutectoid alloy by air pressure infiltration process to comparatively study the influence of macroscopic pores on the damping behaviors of the materials. Macroscopic pores size are on the order of a millimetre (0.5~1.4mm) and in large proportions, typically high 76vol.%. The damping behavior of the materials is characterized by internal friction (IF). The IF was measured on a multifunction internal friction apparatus (MFIFA) at frequencies of 0.5, 1.0 and 3.0 Hz over the temperature range of 25 to 400 °C, while continuously changing temperature. The damping capacity of the metal materials is shown to increase with introducing macroscopic pores. Finally, the operative damping mechanisms in the metal materials with macroscopic pores were discussed in light of IF measurements.


2006 ◽  
Vol 319 ◽  
pp. 33-38 ◽  
Author(s):  
I. Yoshida ◽  
Kazuhiro Otsuka

Low frequency internal friction of Ti49Ni51 binary and Ti50Ni40Cu10 ternary shape memory alloys has been measured. The effect of solution and aging heat treatments on the damping property was examined. The temperature spectrum of internal friction for TiNi binary alloy consists, in general, of two peaks; one is a transition peak which is associated with the parent-martensite transformation and is rather unstable in a sense that it strongly depends on the frequency and decreases considerably when held at a constant temperature. The other one is a very high peak of the order of 10-2, which appears at around 200K. It appears both on cooling and on heating with no temperature hysteresis, and is very stable. The behavior of the peak is strongly influenced by the heat treatments. The trial of two-stage aging with a purpose of improving the damping capacity has been proved unsatisfactory. TiNiCu has a very high damping, the highest internal friction reaching 0.2, but by quenching from very high temperature, say 1373K, the damping is remarkably lowered. For the realization of high damping the quenching from a certain temperature range around 1173K seems the most preferable condition.


2012 ◽  
Vol 535-537 ◽  
pp. 1027-1030
Author(s):  
Xiao Hui Cao ◽  
Yu Wang

By using a low frequency inverted torsion pendulum, the high temperature internal friction spectra of Al-0.02wt%Zr and Al-0.1wt%Zr alloys were investigated respectively. In Al-0.02wt%Zr alloy, the conventional grain boundary internal friction peak (Pg) is observed with some small unstable peaks. In Al-0.1wt%Zr alloy, the bamboo peak is observed to appear at the high temperature side of the conventional grain boundary internal friction peak. The conventional grain boundary internal friction peak decreased and moved to higher temperature. The bamboo peak owns an activation energy of 1.75eV. When average grain size exceeded the diameter of samples, Pb strength was reduced and its position was shifted to a lower temperature. Based on the grain boundary sliding model, Pg and Pb peaks were explained. Their dependence on annealing temperature and time was determined by considering the effects of contained Ce atoms and other impurities on the relaxation across grain boundary.


2021 ◽  
Vol 1016 ◽  
pp. 1710-1714
Author(s):  
Hiroshi Yukawa ◽  
Tomonori Nambu ◽  
Yoshihisa Matsumoto

A series of accelerated degradation experiments at high temperatures have been performed for Pd-coated V-10 mol% Fe alloy membranes in order to investigate the degradation behavior of hydrogen permeability. The degradation of the membrane becomes severer with increasing testing temperature. The temperature dependence of the 20% degradation rate almost obeys the Arrhenius relationship, suggesting that the degradation phenomenon occurs by a kind of thermal activation process. It is found that the addition of a small amount of W into Pd overlayer improves the durability of the membrane significantly.


2015 ◽  
Vol 363 ◽  
pp. 106-111
Author(s):  
Shigeru Suzuki ◽  
Alfred Seeger

Dislocation-induced relaxations in different molybdenum single crystals were investigated by means of low-frequency internal friction measurements in the temperature range of 20–600 K. The results indicated that the appearance of the dislocation-induced relaxations strongly depends on the purity of the molybdenum, although the intrinsic dislocation relaxations appeared at about 100 K and 450 K in the high-purity molybdenum. The molybdenum containing a small amount of carbon did not exhibit the intrinsic dislocation relaxations but rather revealed a modulus increase due to the dislocation pinning caused by the dissolved carbon. When the molybdenum containing a small amount of carbon was annealed up to 700 K, a new relaxation peak appeared at about 450 K. The activation process for this relaxation indicated that it could be attributed to the relaxation due to a carbon-dislocation interaction. In addition, it was shown that the dislocation-induced relaxations in medium-purity molybdenum were small, which was attributed to the residual substitutional impurities in the molybdenum.


2007 ◽  
Vol 546-549 ◽  
pp. 1531-1534 ◽  
Author(s):  
Qing Zhang ◽  
Lai Fei Cheng ◽  
Wei Wang ◽  
Xi Wei ◽  
Li Tong Zhang ◽  
...  

Internal friction of 2D C/SiC composites fabricated by chemical vapor infiltration (CVI) method was measured by dynamical mechanical analysis (DMA) at different frequencies from room temperature (RT) to 400°C in air atmosphere. Internal friction of 2D C/SiC composites increased gradually with increasing temperature and then decreased after damping peak appeared in the temperature range of 250°C to 300°C. Damping capacity and peak value decreased gradually with increasing frequency, accompanied with a shift of damping peak towards lower temperatures. Moreover, the effect of interphase thickness on damping behavior of 2D C/SiC composites was investigated. The results showed that damping peak of the composites increased gradually and the temperature of the peak shifted to the lower temperature with increasing PyC interphase thickness, when the interphase thickness is in the range of 90~296nm. The influence of interphase thickness on interfacial bonding strength, sliding resistance and the microstructure of SiC matrix was discussed, which was considered to be responsible for the results.


Sign in / Sign up

Export Citation Format

Share Document