An Intelligent Tool Post in a Lathe

2006 ◽  
Vol 505-507 ◽  
pp. 1009-1014
Author(s):  
C.L. Wu ◽  
K.S. Wang

An Intelligent Tool Post (ITP) used in lathe is proposed in this study. ITP is designed from the basis of two different cutting force characteristics produced from abnormal cutting generated by tool crashing workpiece and from normal cutting. ITP is capable of sensing and distinguishing the normal cutting signals from the abnormal ones. During normal cutting, ITP is able to resist the cutting torque and continue the cutting. As abnormal cutting occurs, the tool would move away from the workpiece without any damage. The equations for design and operation have been established. With the threshold and the design equation, one can design appropriate ITP. The threshold can be calculated and set up by the operating equation and the cutting conditions. Furthermore, Taguchi method was employed to conduct the experiments and analyze the experimental results. The results showed that the ITP’s functions met the design requirements completely.

2011 ◽  
Vol 418-420 ◽  
pp. 1307-1311
Author(s):  
Jun Hu ◽  
Yong Jie Bao ◽  
Hang Gao ◽  
Ke Xin Wang

The experiments were carried out in the paper to investigate the effect of adding hydrogen in titanium alloy TC4 on its machinability. The hydrogen contents selected were 0, 0.25%, 0.49%, 0.63%, 0.89% and 1.32%, respectively. Experiments with varing hydrogen contents and cutting conditions concurrently. Experimental results showed that the cutting force of the titanium alloy can be obviously reduced and the surface roughness can be improved by adding appropriate hydrogen in the material. In the given cutting condition, the titanium alloy TC4 with 0.49% hydrogen content showed better machinability.


1989 ◽  
Vol 111 (3) ◽  
pp. 206-212 ◽  
Author(s):  
J. H. Tarn ◽  
M. Tomizuka

This paper is concerned with on-line monitoring of tool and cutting conditions in a milling operation. Key features of the cutting force signal are extracted from the force signal pattern over one spindle revolution. The proposed monitoring scheme combines these features to differentiate tool breakage from variations in cutting conditions. Experimental results are presented to support the proposed monitoring scheme.


2014 ◽  
Vol 945-949 ◽  
pp. 2568-2572
Author(s):  
Si Yuan Wang ◽  
Guang Sheng Ren ◽  
Pan Nie

The test rig for hydro-pneumatic converter used in straddle type monorail vehicles was researched, and its electro-pneumatic proportional control system was set up and simulated based on AMESim/Simulink. Compared fuzzy-PID (Proportion Integral Derivative) controller with PID controller through fuzzy logic tool box in Simulink, the results indicate that, this electro-pneumatic proportional control system can meet design requirements better, and fuzzy-PID controller has higher accuracy and stability than PID controller.


2020 ◽  
Vol 856 ◽  
pp. 43-49
Author(s):  
Santosh Kumar Tamang ◽  
Nabam Teyi ◽  
Rinchin Tashi Tsumkhapa

Machining is one of the major manufacturing processes that converts a raw work piece of arbitrary size into a finished product of definite shape of predetermined size by suitably controlling the relative motion between the tool and the work. Lately, machining process is shifting towards high speed machining (HSM) from conventional machining to improve and efficiently increase production, and towards dry machining from excessive coolant used wet machining to improve economy of production. And the tools used are mostly hardened alloys to facilitate HSM. The work piece materials are continually improving their properties by emergence and development of newer and high resistive super alloys (HRSA). In this paper an attempt has been made to validate an experimental result of cutting force obtained by performing HSM on an HRSA Inconel 718, by comparing it with the numerical result obtained by simulating the same setting using DEFORM 3D software. Based on the comparison it is found that the simulated results exhibit close proximity with the experimental results validating the experimental results and the effectiveness of the software.


1974 ◽  
Vol 96 (1) ◽  
pp. 118-126 ◽  
Author(s):  
G. G. Hirs

Turbulent film flow theories can only be verified on the basis of a large number of experimental results. Since it will be useful to handle these experimental results more or less systematically and to get some idea of the amount of work yet to be done, the first objective of this paper is to set up a classification system for turbulent film flow experiments. The second objective is to verify the bulk flow theory on the basis of the limited number of experimental results available in the literature and to show this theory to be compatible with these results.


2018 ◽  
Vol 764 ◽  
pp. 252-260
Author(s):  
Feng Jiao ◽  
Cheng Lin Yao ◽  
Li Zhao ◽  
Feng Qi

Hard machinability of titanium alloy material and poor stiffness of thin-walled part restricted the extensive applications of titanium alloy thin-walled component in aerospace engineering. In order to increase geometric accuracy, a method of ultrasonic vibration assisted (UVA) end milling technology with workpiece vibrating in feeding direction was put forward in this paper, and the corresponding milling force characteristics in UVA milling of titanium alloy TC4 thin-walled workpiece were researched. Through theoretical analysis, the path of cutter tooth in UVA milling was analyzed. The important factors that affect milling force are obtained with the signal to noise ratio analysis. Results show that the radial cutting force in UVA milling is smaller than that in traditional milling. Cutting force fluctuate in high frequency when treated ultrasonic vibration. And the axial cutting feed is the core factor that affects the milling force. The research provides a certain reference for the precision milling of titanium alloy thin-walled parts.


2020 ◽  
Vol 10 (15) ◽  
pp. 5220 ◽  
Author(s):  
Jianjun Wang ◽  
Jingyi Zhao ◽  
Wenlei Li ◽  
Xing Jia ◽  
Peng Wei

In order to ensure the ride comfort of a hydraulic transport vehicle in transportation, it is important to account for the effects of the suspension system. In this paper, an improved hydraulic suspension system based on a reasonable setting of the accumulator was proposed for a heavy hydraulic transport vehicle. The hydraulic transport vehicle was a multi-degree nonlinear system, and the establishment of an appropriate vehicle dynamical model was the basis for the improvement of the hydraulic suspension system. The hydraulic suspension system was analyzed, and a mathematical model of the hydraulic suspension system with accumulator established and then analyzed. The results revealed that installing the appropriate accumulator can absorb the impact pressure on the vehicle, while a hydraulic suspension system with an accumulator can be designed. Further, it was proved that a reasonable setting for the accumulator can reduce the impact force on the transport vehicle through simulation, and the optimal accumulator parameters can be obtained. Finally, an experiment in the field was set up and carried out, and the experimental results presented to prove the viability of the proposed method.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3121 ◽  
Author(s):  
Xiaoli Qiu ◽  
Xianqiang Cheng ◽  
Penghao Dong ◽  
Huachen Peng ◽  
Yan Xing ◽  
...  

The Johnson-Cook (J-C) constitutive model, including five material constants (A, B, n, C, m), and the Coulomb friction coefficient (μ) are critical preprocessed data in machining simulations. Before they become reliable preprocessed data, investigating these parameters’ effect on simulation results benefits parameter-selecting. This paper aims to investigate the different influence of five settings of the J-C constitutive equation and Coulomb friction coefficient on the turning simulation results of Inconel 718 under low-high cutting conditions, including residual stress, chip morphology, cutting force and temperature. A three-dimensional (3-D) finite element model was built, meanwhile, the reliability of the model was verified by comparing the experiment with the simulation. Sensitivity analysis of J-C parameters and friction coefficient on simulation results at low-high cutting conditions was carried out by the hybrid orthogonal test. The results demonstrate that the simulation accuracy of Inconel 718 is more susceptible to strain hardening and thermal softening in the J-C constitutive model. The friction coefficient only has significant effects on axial and radial forces in the high cutting condition. The influences of the coefficient A, n, and m on the residual stress, chip thickness, cutting force and temperature are especially significant. As the cutting parameters increase, the effect of the three coefficients will change visibly. This paper provides direction for controlling simulation results through the adjustment of the J-C constitutive model of Inconel 718 and the friction coefficient.


Author(s):  
Wentian Shi ◽  
Yanjun Hou ◽  
Chao Kong ◽  
Yude Liu

In this paper, the Taguchi method has been used to optimize cutting parameters in the turning of Ti6Al4V/Al7050 laminates under elliptical vibration cutting. The turning tests were conducted based on L16 orthogonal array, which was designed by the Taguchi method. The analysis of variance was used to calculate impacts of cutting parameters on cutting forces and temperature. The analysis of results showed that the vibration frequency is the dominant factor on the cutting force and the vibration amplitude is a dominant factor affecting the temperature. The analysis of variance was also used to predict the cutting force and temperature in the turning of Ti6Al4V/Al7050 laminate. A good agreement between the predicted and the actual value can be found in the results.


Sign in / Sign up

Export Citation Format

Share Document