scholarly journals FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy

HBRC Journal ◽  
2013 ◽  
Vol 9 (3) ◽  
pp. 263-269 ◽  
Author(s):  
Moaz H. Ali ◽  
Basim A. Khidhir ◽  
M.N.M. Ansari ◽  
Bashir Mohamed
2016 ◽  
Vol 693 ◽  
pp. 1009-1014 ◽  
Author(s):  
Su Lin Chen ◽  
Bin Shen ◽  
Fang Hong Sun

This paper presents a study of the influence of cutting conditions (cutting velocity, feed, cutting depth and lubrication) on turning TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy. Taguchi methodology design was adopt for carrying out experiments. Turning process parameters such as cutting speed, feed rate and depth of cut were varied to study their effect on process responses such as cutting force (Ft), surface roughness (Ra) and temperature on cutting zones (T). Minimum quantity lubrication (MQL) technology was adopt to increase the lubricating and cooling effect. Meanwhile, CVD diamond coating was deposited on the cemented carbide insert to reduce its friction with workpiece and increase its wear resistance. From the analysis of orthogonal tests, depth of cut contributes the most for the main cutting force and cutting temperature, while feed rate had the most significant effect on surface roughness on the workpiece. MQL can reduce the cutting temperature at the cutting zones, especially for the uncoated cutting inserts whose temperature decreases by an average of 60~80°C. The cutting force, surface roughness and cutting temperature of CVD diamond coated inserts were all higher than those of uncoated tools, especially with MQL lubrication. Considering the cutting efficiency and cost, the optimal parameters in the turning process of TC11 for minimizing the cutting force, surface roughness and cutting temperature are obtained as Vc=115m/min, f=0.08mm, ap=0.5mm under MQL lubricating with uncoated cemented carbide as the cutting tool.


2021 ◽  
pp. 089270572199320
Author(s):  
Prakhar Kumar Kharwar ◽  
Rajesh Kumar Verma

The new era of engineering society focuses on the utilization of the potential advantage of carbon nanomaterials. The machinability facets of nanocarbon materials are passing through an initial stage. This article emphasizes the machinability evaluation and optimization of Milling performances, namely Surface roughness (Ra), Cutting force (Fc), and Material removal rate (MRR) using a recently developed Grey wolf optimization algorithm (GWOA). The Taguchi theory-based L27 orthogonal array (OA) was employed for the Machining (Milling) of polymer nanocomposites reinforced by Multiwall carbon nanotube (MWCNT). The second-order polynomial equation was intended for the analysis of the model. These mathematical models were used as a fitness function in the GWOA to predict machining performances. The ANOVA outcomes efficiently explore the impact of machine parameters on Milling characteristics. The optimal combination for lower surface roughness value is 1.5 MWCNT wt.%, 1500 rpm of spindle speed, 50 mm/min of feed rate, and 3 mm depth of cut. For lower cutting force, 1.0 wt.%, 1500 rpm, 90 mm/min feed rate and 1 mm depth of cut and the maximize MRR was acquired at 0.5 wt.%, 500 rpm, 150 mm/min feed rate and 3 mm depth of cut. The deviation of the predicted value from the experimental value of Ra, Fc, and MRR are found as 2.5, 6.5 and 5.9%, respectively. The convergence plot of all Milling characteristics suggests the application potential of the GWO algorithm for quality improvement in a manufacturing environment.


2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2011 ◽  
Vol 418-420 ◽  
pp. 1307-1311
Author(s):  
Jun Hu ◽  
Yong Jie Bao ◽  
Hang Gao ◽  
Ke Xin Wang

The experiments were carried out in the paper to investigate the effect of adding hydrogen in titanium alloy TC4 on its machinability. The hydrogen contents selected were 0, 0.25%, 0.49%, 0.63%, 0.89% and 1.32%, respectively. Experiments with varing hydrogen contents and cutting conditions concurrently. Experimental results showed that the cutting force of the titanium alloy can be obviously reduced and the surface roughness can be improved by adding appropriate hydrogen in the material. In the given cutting condition, the titanium alloy TC4 with 0.49% hydrogen content showed better machinability.


2012 ◽  
Vol 497 ◽  
pp. 94-98
Author(s):  
Yang Qiao ◽  
Xiu Li Fu ◽  
Xue Feng Yang

Powder metallurgy (PM) nickel-based superalloy is regarded as one of the most important aerospace industry materials, which has been widely used in advanced turbo-engines. This work presents an orthogonal design experiments to study the cutting force and cutting temperature variations in the face milling of PM nickel-based superalloy with PVD coated carbide tools. Experimental results show that with the increase of feed rate and depth of cut, there is a growing tendency in cutting force, with the increase of cutting speed, cutting force decreases. Among the cutting parameters, feed rate has the greatest influence on cutting force, especially when cutting speed exceeds 60m/min. With the increase of all the cutting parameters, cutting temperature increases. However the cutting temperature increases slightly as the increasing of feed rate. Tool failure mechanisms in face milling of PM nickel-based superalloy are analyzed. It is shown that the breakage and spalling on the cutting edge are the most dominate failure mechanisms, which dominates the deterioration and final failure of the coated carbide tools.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Andrzej Matras

The paper studies the potential to improve the surface roughness in parts manufactured in the Selective Laser Melting (SLM) process by using additional milling. The studied process was machining of samples made of the AlSi10Mg alloy powder. The simultaneous impacts of the laser scanning speed of the SLM process and the machining parameters of the milling process (such as the feed rate and milling width) on the surface roughness were analyzed. A mathematical model was created as a basis for optimizing the parameters of the studied processes and for selecting the sets of optimum solutions. As a result of the research, surface with low roughness (Ra = 0.14 μm, Rz = 1.1 μm) was obtained after the face milling. The performed milling allowed to reduce more than 20-fold the roughness of the SLM sample surfaces. The feed rate and the cutting width increase resulted in the surface roughness deterioration. Some milled surfaces were damaged by the chip adjoining to the rake face of the cutting tool back tooth.


2015 ◽  
Author(s):  
André Faraon Rodrigues ◽  
Cássio Magalhães dos Reis ◽  
Matheus Nunes Duran ◽  
Guilherme Cortelini da Rosa ◽  
André João de Souza

Author(s):  
Emel Kuram

Tool coatings can improve the machinability performance of difficult-to-cut materials such as titanium alloys. Therefore, in the current work, high-speed milling of Ti6Al4V titanium alloy was carried out to determine the performance of various coated cutting tools. Five types of coated carbide inserts – monolayer TiCN, AlTiN, TiAlN and two layers TiCN + TiN and AlTiN + TiN, which were deposited by physical vapour deposition – were employed in the experiments. Tool wear, cutting force, surface roughness and chip morphology were evaluated and compared for different coated tools. To understand the tool wear modes and mechanisms, detailed scanning electron microscope analysis combined with energy dispersive X-ray of the worn inserts were conducted. Abrasion, adhesion, chipping and mechanical crack on flank face and coating delamination, adhesion and crater wear on rake face were observed during high-speed milling of Ti6Al4V titanium alloy. In terms of tool wear, the lowest value was obtained with TiCN-coated insert. It was also found that at the beginning of the machining pass TiAlN-coated insert and at the end of machining TiCN-coated insert gave the lowest cutting force and surface roughness values. No change in chip morphology was observed with different coated inserts.


2010 ◽  
Vol 146-147 ◽  
pp. 1750-1753 ◽  
Author(s):  
C.H. Che Haron ◽  
J.A. Ghani ◽  
Mohd Ali Sulaiman ◽  
L.R. Intan ◽  
M.S. Kasim

This paper investigates the effect of minimum quantity lubricant (MQL) on the surface roughness of titanium alloy Ti-6Al-4V ELI when turning using uncoated tungsten carbide tool. The response surface method (RSM) design of experiment using Box-behnken was used to accomodate the turning experiment factors and levels. Turning parameters studied were cutting speed (100, 135, 170 m/min), feed rate (0.15, 0.2, 0.25 mm/rev) and depth of cut (0.6, 0.8, 1.0 mm). The results show that the feed rate was the most influence factor controlling the surface roughness produced. The feed rate (F) was found directly proportional with the surface roughness value (Ra) but inversely proportional to the cutting speed (Vc). MINITAB software was used to develop a surface roughness model, and the optimum condition was at 160 m/min of cutting speed, 0.18 mm/rev of feed rate and 1 mm of depth of cut. At the optimum condition low value of 1.54 μm surface roughness was obtained.


Sign in / Sign up

Export Citation Format

Share Document