The Finite Element Analysis of Thermal Property of High-Speed Spindle System in Vertical Machining Center

2012 ◽  
Vol 433-440 ◽  
pp. 567-571 ◽  
Author(s):  
Hong Mei Sun ◽  
Yan Zhong Wang

The thermal property of the high-speed spindle system in vertical machining center was studied by using finite element method ( FEM ). When the spindle runs at the speed of 4300r/min, the system reaches the thermal steady state after 17 minutes, the temperature distribution in the spindle was symmetrical, and the highest temperature is in the inner ring the front bearing, with temperature rise of 36.7 .With the cutting force as load, The calculated result was taken as an input parameter in Abaqus software, the results of which show the thermal deformation of the spindle. The maximum thermal deformation of the spindle is 1.185 × 10-2 mm, on the shoulder, near the edge of the cutter.

2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract A finite element formulation to solve the dynamic behavior of high-speed Shinkansen cars, rail, and bridge is given. A mechanical model to express the interaction between wheel and rail is described, in which the impact of the rail on the flange of wheel is also considered. The bridge is modeled by using various finite elements such as shell, beam, solid, spring, and mass. The equations of motions of bridge and Shinkansen cars are solved under the constitutive and constraint equations to express the interaction between rail and wheel. Numerical method based on a modal transformation to get the dynamic response effectively is discussed. A finite element program for the dynamic response analysis of Shinkansen cars, rail, and bridge at the high-speed running has been developed. Numerical examples are also demonstrated.


2014 ◽  
Vol 555 ◽  
pp. 555-560 ◽  
Author(s):  
Doru Bardac ◽  
Constantin Dogariu

This paper presents a method to investigate the characteristics of a turning high-speed spindle system. The geometric quality of high-precision parts is highly dependent on the performance of the entire machining system,especially by the main spindle behaviour. The machine tool main spindle units is focused on direct driven spindle units for high-speed and high performance cutting. This paper analyzes the static behavior for a turning machine spindle and presents some activities to improve the CAD model for such complex systems. The proposed models take into account the spindle with the detailed bearing system. The analysis was performed during the design activity and was based on Finite Elements Method. Starting from the 3D designed model, using FEM done by means of ANSYS analysis the structure stiffness was evaluated and, by consequence, the influence on the machine tool precision. The aim of this paper is to develop a finite element model of the machine spindle system and to use this method for design optimization. The 3D model was designed using the SolidWorks CAD software. The static analysis was completed by modal, harmonic response and thermal analysis, but their results will be presented in other papers.


1981 ◽  
Vol 103 (4) ◽  
pp. 385-391 ◽  
Author(s):  
B. S. Thompson

Variational theorems are presented for analyzing the vibrational response of flexible linkage mechanisms and the surrounding acoustic medium in which they are immersed. These theorems are established by generalizing Hamilton’s principle through using Lagrange multipliers to incorporate field equations and boundary conditions within the functional. The same philosophy is adopted to handle the conditions at the fluid-structural interface. When independent arbitrary variations of the system parameters are permitted, these acousto-elastodynamic theorems yield as characteristic equations the equation of motion for each member of the linkage, the acoustical wave equation, the compatibility conditions at the interface between the fluid and solid continua, and also the boundary conditions. These variational statements provide the foundations for several different classes of finite element analysis.


2011 ◽  
Vol 317-319 ◽  
pp. 595-599
Author(s):  
Yu Xin Sun ◽  
Ling Ding ◽  
Tao Shi ◽  
Xian Xing Liu

According to magnetic suspension motorized spindle system, high speed motorized spindle system based on bearingless induction motor is presented in this paper. The prototype of high speed motorized spindle system with bearingless induction motor is studied and analyzed by using finite element analysis software Ansoft/Maxwell and Riccati transfer matrix method, and compared with high speed motorized spindle system supported by Active Magnetic Bearing (AMB). The results show that high speed motorized spindle system with bearingless induction motor has distinct advantage of simple and compact structure, which is easier to realize high speed and extra-high speed operation.


2012 ◽  
Vol 479-481 ◽  
pp. 2481-2484 ◽  
Author(s):  
Zhong Qi Sheng ◽  
Xiang Dong Shi ◽  
Sheng Li Dai ◽  
Yan Jin

This paper used finite element method to analyze thermal characteristics of numerical control (NC) machine spindle system, and studied the steady temperature field and the transient temperature field of the machine tool and the thermal deformation of the spindle at 3000 rpm. General finite element analysis software ANSYS is used for analysis. Through the analysis of the temperature field and thermal deformation of the spindle system, this paper finally obtained the deformation situation of the spindle system in thermal load. By changing the boundary conditions of the spindle system to analyze the heat distortion of the spindle system and the results showed that assembling a cooling jacket in front of the spindle box can signally reduce the thermal error of the spindle system.


2015 ◽  
Vol 740 ◽  
pp. 142-145
Author(s):  
Dong Zhe Wang ◽  
Jian Min Ge ◽  
Xian Kui Zeng ◽  
Zong Ting Zhang ◽  
Chong Lv

In this paper, based on the honeycomb floor damper of high-speed train, the finite element analysis was carried out on the floor damper, and we compared the experimental results with the physical model experiments. The results show that: when correction factor γ = 0.5, there is the minimum incremental error of vertical deformation, and the value of the damper parameters is the best at this time.


2011 ◽  
Vol 341-342 ◽  
pp. 291-295
Author(s):  
Ru Fu Hu ◽  
Xiao Ping Chen ◽  
Huan Xin Yao

Improving thermal characteristics is a crucial approach for increasing machining accuracy of NC lathe. Modeling and analysis of thermal characteristics to a high speed NC lathe were implemented by using finite element method in this paper. Based on this, temperature rise characteristic of the whole spindle system was obtained. The thermal deformation of spindle system due to thermal-mechanical coupling was calculated. Layout and parameter were optimized for the radiating plate of spindle box. And this leads to a considerable reduction in the run-out error of spindle head. The optimization result reaches the expected goal.


2007 ◽  
Vol 353-358 ◽  
pp. 2871-2874
Author(s):  
Zhao Zhang ◽  
Xi De Li ◽  
Wen Shen

In this paper, a speckle microinterferometric system was employed to study the thermal deformation of the Cu microbridges with different dimensions. The deflections of the microbridges caused by the thermal loading were measured with real-time by the speckle microinterferometric system and the surface temperatures of the bridges were recorded using a digital thermometer. The deformation evaluation after microbridges buckling was also recorded with our testing system. Then, the experimental results were compared with the finite element analysis (FEA).


Sign in / Sign up

Export Citation Format

Share Document