Torsional Vibration Control of High-Rise Building with Large Local Space by Using Tuned Mass Damper

2012 ◽  
Vol 446-449 ◽  
pp. 3066-3071 ◽  
Author(s):  
Bin Zhao ◽  
Hui Gao

According to the shake table test results of a high-rising building with large local space, the dynamic characteristics of such structure are complex and the torsional mode becomes the first mode, while the torsional responses under earthquake excitation, especially of the floor just above the large local space, are very remarkable. Special measures are required for such structural system for maintaining its seismic safety. In this research, the bidirectional Tuned Mass Damper (TMD) is employed for reducing the torsional vibration of the high-rising building with large local space. The optimization of the TMD parameters, such as natural frequency, damping ratios and mass ratio, is performed. The time history analysis results indicate that the proposed bidirectional TMD is very effective in torsional vibration control.

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Xiaohan Wu ◽  
Jun Wang ◽  
Jiangyong Zhou

A high four-tower structure is interconnected with a long sky corridor bridge on the top floor. To reduce the earthquake responses and member forces of the towers and sky corridor bridge, a passive control strategy with a friction pendulum tuned mass damper (FPTMD) was adopted. The sky corridor bridge was as the mass of FPTMD. The connection between the towers and the sky corridor bridge was designed as flexible links, where friction pendulum bearings (FPBs) and viscous dampers were installed. Elastoplastic time-history analysis was conducted by using Perform-3D model to look into its seismic behavior under intensive seismic excitation. The optimal design of the FPTMD with varying friction coefficients and radius of friction pendulum bearing (FPB) under seismic excitations was carried out, and the seismic behavior of the structure was also investigated at the same time.Results show that, for this four-tower connected structure, the friction pendulum tuned mass damper (FPTMD) has very well effect on seismic reduction. The structure can meet the seismic resistance design requirements.


2019 ◽  
Vol 26 (11-12) ◽  
pp. 1054-1067 ◽  
Author(s):  
Seyyed Hossein Hossein Lavassani ◽  
Hamed Alizadeh ◽  
Peyman Homami

Suspension bridges are structures that because of their long span and high flexibility can be prone to ambient vibrations such as ground motions. They can experience high amplitude vibrations in torsional mode during an earthquake, where a vibration control strategy seems necessary. Recently, control systems have been widely used to mitigate vibration of structures. Tuned mass damper is a passive control system. Its performance and effectiveness have been verified both theoretically and practically. In this study, a tuned mass damper system is used to mitigate the torsional vibration of a suspension bridge. The Vincent Thomas suspension bridge is selected as a case study, and its response is reduced by a tuned mass damper under ten pulse-type records from 10 major worldwide earthquakes. By using sensitivity analysis, a parametric study is carried out to optimize tuned mass damper parameters, namely, mass ratio, gyration radius, tuning frequency, and damping ratio according to the maximum reduction of the response maxima. Finally, the optimum range of each parameter that can give the best performance and provide both operational and economic justification for the implementation of the project is suggested. The numerical results indicate that the optimized tuned mass damper system can substantially reduce the maximum response and vibration time.


2012 ◽  
Vol 446-449 ◽  
pp. 3889-3893
Author(s):  
Bin Zhao ◽  
Juan He ◽  
Hui Gao ◽  
Xu Gang Chen

For many high-rising buildings, large local space is very useful for its special function needs, such as conference hall and hotel lobby. The shake table test results of a high-rising building with large local space show that the dynamic characteristics of such structure are complex and the torsional mode becomes the first mode, while the torsional responses under earthquake excitation, especially of the floor just above the large local space, are very remarkable. In this paper, the bidirectional Tuned Mass Damper (TMD) is employed for reducing the torsional vibration of such complex high-rise building structure. A reduced-scale model is design and constructed. A series of shake table tests are carried out and the test results indicate that the TMD system is very effective in torsional vibration control of structural system.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Haoxiang He ◽  
Wentao Wang ◽  
Honggang Xu

Due to the eccentric characteristics and the torsional excitation of multidimensional earthquakes, the dynamic response of asymmetry structure involves the translation-torsion coupling vibration and it is adverse to structural performance. Although the traditional tuned mass damper (TMD) is effective for decreasing the translational vibration when the structure is subjected to earthquake, its translation-torsion coupled damping capacity is still deficient. In order to simultaneously control the translational responses and the torsional angle of asymmetry structures, a new type of tuned mass damper with tuned mass blocks, orthogonal poles, and torsional pendulums (TMDPP) is proposed. The translation-torsion coupled vibration is tuned by the movement of the mass blocks and the torsional pendulums. According to the composition and the motion mechanism of the TMDPP, the dynamic equation for the total system considering eccentric torsion effect is established. The damping capacity of the TMDPP is verified by the time history analysis of an eccentric structure, and multidimensional earthquake excitations are considered. The damping effect of the traditional TMD and the TMDPP is compared, and the results show that the performance of TMDPP is superior to the traditional TMD. Moreover, the occasional amplitude amplification in TMD control does not appear in the TMDPP control. The main design parameters which affect the damping performance of TMDPP are analyzed.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Peng Zhang ◽  
Jie Tan ◽  
Haitao Liu ◽  
Gang Yang ◽  
Chunyi Cui

In order to mitigate the seismic response of a cable-stayed bridge, a new type damping device named asymmetric pounding tuned mass damper (APTMD) is developed in this paper on the basis of the traditional symmetric pounding tuned mass damper. The novel APTMD has three parameters to be determined: the left-side gap, the right-side gap, and the frequency ratio. A numerical model of the APTMD damping system is established with consideration of both the computational efficiency and accuracy to enable the parametric optimization of the damper. The numerical model is based on a simplified model of the cable-stayed bridge and a nonlinear pounding force model. The genetic algorithm is utilized for the optimization of the damper. Afterwards, the cable-stayed bridge is subjected to 20 recorded ground motions to evaluate the vibration control effectiveness of the APTMD. Four systems are considered: (1) without dampers; (2) with a TMD; (3) with a PTMD; and (4) with an APTMD. Time history analysis reveals the following: (1) those dampers can all effectively suppress the vibration of the bridge and (2) the vibration control effectiveness of the APTMD is slightly better than the TMD and the PTMD.


2021 ◽  
pp. 095745652110004
Author(s):  
Duy-Chinh Nguyen

The shaft is one of the most important parts of the machine, and it is used to transmit torque. However, the shaft does not always rotate at constant angular velocity due to sudden acceleration or deceleration or due to unstable current. The rotation of the shaft varies with time, which causes torsional vibration on the rotating shaft. To the best of the author’s knowledge, there is no study on designing a symmetric tuned mass damper (STMD) for the rotating shaft with variable angular velocity. Therefore, the purpose of this study is to design an optimal STMD to reduce torsional vibration for the rotating shaft with variable angular velocity. First, the author designs an optimal STMD for the rotating shaft by the fixed-points theory. Second, the optimal parameters of the STMD are obtained by using the minimum quadratic torque method. The optimal parameters of the STMD are defined in analytic and explicit forms, helping researchers to easily design an optimal STMD when applying to reduce torsional vibration for the rotating shaft. Finally, to evaluate the reliability of the designed optimal STMD, Maple software is used to simulate the vibration of the rotating shaft attached with the optimal STMD, as well as to help the readers to have a visual view on the effect of reducing torsional vibration of the rotating shaft.


2021 ◽  
pp. 107754632110004
Author(s):  
Sanjukta Chakraborty ◽  
Aparna (Dey) Ghosh ◽  
Samit Ray-Chaudhuri

This article presents the design of a tuned mass damper with a conical spring to enable tuning to the natural frequency of the system at multiple values, as may be convenient in case of a system with fluctuations in the mass. The principle and design procedure of the conical spring in the context of a varying mass system are presented. A passive feedback control mechanism based on a simple pulley-mass system is devised to cater to the multi-tuning requirements. A design example of an elevated water tank with fluctuating water content, subjected to ground excitation, is considered to numerically illustrate the efficiency of such a tuned mass damper associated with the conical spring. The conical spring is designed based on the tuning requirements at different mass conditions of the elevated water tank by satisfying the allowable load bearing capacity of the spring. Comparisons are made with the conventional passive tuned mass damper with a linear spring tuned to the full tank condition. Results from time history analysis reveal that the conical spring-tuned mass damper can be successfully designed to remain tuned and thereby achieve significant response reductions under stiffening conditions of the primary structure, whereas the linear spring-tuned mass damper suffers performance degradation because of detuning, whenever there is any fluctuation in the system mass.


Sign in / Sign up

Export Citation Format

Share Document