A Modified Finite Element Model for Electromagnetic Tube Compression Process

2012 ◽  
Vol 468-471 ◽  
pp. 456-460
Author(s):  
M. Sedighi ◽  
M. Khandaei ◽  
M.A> Liaghat

This paper presents an approach for modification a FEM simulation of electromagnetic tube compression process which has been presented by Mamalis. Electromagnetic free compression of a tube inside a coil has been simulated by using elements with coupled DOFs of electrical and magnetic potentials and displacement components. Mamalis's simulation results show a degree of disagreement with experimental results. In the present work, the coil has been modeled as separate parallel rings and a new correction factor has been determined for the current load applied on the coil. Comparison between simulation and experimental results shows a good agreement at the middle of workpiece with a reasonable error at workpiece ends.

2012 ◽  
Vol 426 ◽  
pp. 172-176
Author(s):  
Hun Guo

The key problems in 2D FEM simulation such as the establishment of finite element model, the initial stress loading, the distortion appraisal are solved and 2D FEM simulation model is built to analyze the milling distortion caused by the residual stress. The FEM model is verified by the elasticity theory. Some machining cases are simulated by using of the FEM model. The machining distortion caused by residual stress are analyzed and summarized using the simulation results.


2010 ◽  
Vol 136 ◽  
pp. 39-42
Author(s):  
Yuan Wei Liu

The key problems in 2D FEM simulation such as the establishment of finite element model, the initial stress loading, the distortion appraisal are solved and 2D FEM simulation model is built to analyze the milling distortion caused by the residual stress. The FEM model is verified by the elasticity theory. Some machining cases are simulated by using of the FEM model. The machining distortion caused by residual stress are analyzed and summarized using the simulation results.


Author(s):  
Katsumasa Tanaka ◽  
Katsuya Matsuoka ◽  
Shogo Fujita ◽  
Yukihiro Teranishi ◽  
Sadayuki Ujihashi

The objective of this study was to construct a finite element model for simulating the mechanical behaviour of a golf club and ball from swing to impact. An experiment using a golf robot was conducted to obtain the motion of the shaft grip during the swing, and the behaviour of the club and ball during the swing and impact. The swing model was developed by inputting the positional coordinate data of the grip, which was obtained from an experiment, into the grip model. The simulation results generally matched the experimental results for the swing motion, the behaviour of the shaft during the swing and the clubhead velocity and orientation at impact. The modelling of the grip contributed to the accuracy of the simulation results by precisely representing swing motion and suppressing the generation of vibration in the shaft grip. This indicates that the components of the proposed modelling method may also be suitable for representing the swing using data obtained from the robot test, and that the model and the approach for modelling may have potential to be used as a predictable tool to supplement robot tests, reducing the dependency on prototypes.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 875
Author(s):  
Jie Wu ◽  
Yuri Hovanski ◽  
Michael Miles

A finite element model is proposed to investigate the effect of thickness differential on Limiting Dome Height (LDH) testing of aluminum tailor-welded blanks. The numerical model is validated via comparison of the equivalent plastic strain and displacement distribution between the simulation results and the experimental data. The normalized equivalent plastic strain and normalized LDH values are proposed as a means of quantifying the influence of thickness differential for a variety of different ratios. Increasing thickness differential was found to decrease the normalized equivalent plastic strain and normalized LDH values, this providing an evaluation of blank formability.


2021 ◽  
Author(s):  
Sandeep Dhar

The trajectory of an angular particle as it cuts a ductile target is, in general, complicated because of its dependence not only on particle shape, but also on particle orientation at the initial instant of impact. This orientation dependence has also made experimental measurement of impact parameters of single angular particles very difficult, resulting in a relatively small amount of available experimental data in the literature. The current work is focused on obtaining measurements of particle kinematics for comparison to rigid plastic model developed by Papini and Spelt. Fundamental mechanisms of material removal are identified, and measurements of rebound parameters and corresponding crater dimensions of single hardened steel particles launched against flat aluminium alloy targets are presented. Also a 2-D finite element model is developed and a dynamic analysis is performed to predict the erosion mechanism. Overall, a good agreement was found among the experimental results, rigid-plastic model predictions and finite element model predictions.


Author(s):  
Lý Hùng Anh ◽  
Nguyễn Phụ Thượng Lưu ◽  
Nguyễn Thiên Phú ◽  
Trần Đình Nhật

The experimental method used in a frontal crash of cars costs much time and expense. Therefore, numerical simulation in crashworthiness is widely applied in the world. The completed car models contain a lot of parts which provided complicated structure, especially the rear of car models do not contribute to behavior of frontal crash which usually evaluates injuries of pedestrian or motorcyclist. In order to save time and resources, a simplification of the car models for research simulations is essential with the goal of reducing approximately 50% of car model elements and nodes. This study aims to construct the finite element models of front structures of vehicle based on the original finite element models. Those new car models must be maintained important values such as mass and center of gravity position. By using condition boundaries, inertia moment is kept unchanged on new model. The original car models, which are provided by the National Crash Analysis Center (NCAC), validated by using results from experimental crash tests. The modified (simplistic) vehicle FE models are validated by comparing simulation results with experimental data and simulation results of the original vehicle finite element models. LS-Dyna software provides convenient tools and very strong to modify finite element model. There are six car models reconstructed in this research, including 1 Pick-up, 2 SUV and 3 Sedan. Because car models were not the main object to evaluate in a crash, energy and behavior of frontal part have the most important role. As a result, six simplified car models gave reasonable outcomes and reduced significantly the number of nodes and elements. Therefore, the simulation time is also reduced a lot. Simplified car models can be applied to the upcoming frontal simulations.


2014 ◽  
Vol 501-504 ◽  
pp. 2479-2483
Author(s):  
Wei Bin Yuan ◽  
Chang Yi Chen

The flattening behaviour of angle section beams subjected to pure bending is studied in this paper. Analytical solutions for static instabilities of angle section beams subjected to pure bending about its weak axis are derived using energy methods. Nonlinear finite element model using the code ANSYS is developed to simulate nonlinear snap-through instability of angle section beams under pure bending. The optimization assumption about flattening shape of the leg is proposed, through comparison of between the present solutions, experimental results, and the finite element results.


2016 ◽  
Vol 858 ◽  
pp. 913-916 ◽  
Author(s):  
Konstantinos Zekentes ◽  
Konstantin Vassilevski ◽  
Antonis Stavrinidis ◽  
George Konstantinidis ◽  
Maria Kayambaki ◽  
...  

Purely vertical 4H-SiC JFETs have been modeled by using three different approaches: the analytical model, the finite element model and the compact model. The results of the modeling have been compared with experimental results on a series of fabricated self-aligned devices with two different channel lengths (0.3 and 1.1μm) and various channel widths (1.5, 2, 2.5, 3, 4 and 5 μm). For all the considered models I-V and C-V characteristics could be satisfactorily simulated.


2011 ◽  
Vol 88-89 ◽  
pp. 638-641 ◽  
Author(s):  
Lei Chen

Earing is often undesirable in the production of deep drawn containers because it results in a nonuniform cup height. A finite element model for earring analysis is developed considering only the flange area of the sheet. It was found that the draw-in depth of the flange increases with the increase of the r value, and it remains invariable when r value is larger than 2. With the increase of the r value, the max thickness decreases and the min thickness increases. If △r>0, four earings are formed. If △r =0, the material characteristics in all the planar directions are same. The flange uniformly flows into the die cavity, no earing is formed. If △r<0, four earings are formed. The earing distribution is dominated by r0, r45 and r90. Both r and △r have much effect on the earing distribution.


2018 ◽  
Vol 18 (08) ◽  
pp. 1840024
Author(s):  
MONAN WANG ◽  
RONGPENG LI ◽  
JUNTONG JING

Living body or corpse could be replaced with the virtual human tissue model for biomechanical experimental study, which effectively avoids the non-reusability, great social controversy, huge costs and difficulty in extracting parameters, and finally, the accurate analysis results are obtained. Unlike the previous lower limb models, the finite element models of hip and thigh were established based on the concept of muscle group in this paper. The cortical bones of hip bone and femur were set as *MAT_PIECEWISE_LINEAR_ PLASTICITY. The material of cancellous bone was set as *MAT_ELASTIC_PLASTIC_ WITH_DAMAGE_FAILURE. The material of articular cartilage was set as *MAT_ISOTROPIC_ELASTIC. The materials of muscle and fat were set as *MAT_VISCOELASTIC. The accuracy of the finite element model was verified by dynamic three-point bending experiment of the thighs. Mechanical simulation was carried out to the stump-prosthetic socket and the comfort of socks by the established model. The simulation results were all between the upper and lower bounds of the experimental results in the dynamic three-point bending experiment of the thighs where the loads were separately applied to one-third of the distal end of thighs and the middle part of thighs. The simulation results of the stump-prosthetic socket example show that the optimal elastic modulus of silicone pad is 2.5[Formula: see text]MPa. Simulation results of socks comfort show that the distribution of stress and deformation of the anterior and posterior thighs is different when the human lower limbs are in stockings. The established simulation model meets the accuracy requirement and can replace the living body or corpse to carry out biomechanical experimental study. The finite element simulation results converge, and the time to complete a finite element calculation is less than or equal to 10[Formula: see text]min.


Sign in / Sign up

Export Citation Format

Share Document