Finite Element Simulation and Analysis on Folding Defects of Inner-Grooved Copper Tubes

2012 ◽  
Vol 472-475 ◽  
pp. 791-794
Author(s):  
Jin Song Liu ◽  
Neng Yong Ye ◽  
Shi Hong Zhang

Based on the actual field processing parameters, the finite element model of TP2 inner- -grooved copper tubes at the groove forming stage was established by using finite element software MSC. Marc in this paper. It shows that the simulation results are in agreement with the actual situation. The flowing condition of inner groove during metal deformation can be reflected exactly through this model. By the analysis on the metal force of spinning area, the revolving speed of motor and grooved plug and the drawing speed have a great influence on the folding defects.

2020 ◽  
Vol 38 (1A) ◽  
pp. 25-32
Author(s):  
Waleed Kh. Jawad ◽  
Ali T. Ikal

The aim of this paper is to design and fabricate a star die and a cylindrical die to produce a star shape by redrawing the cylindrical shape and comparing it to the conventional method of producing a star cup drawn from the circular blank sheet using experimental (EXP) and finite element simulation (FES). The redrawing and drawing process was done to produce a star cup with the dimension of (41.5 × 34.69mm), and (30 mm). The finite element model is performed via mechanical APDL ANSYS18.0 to modulate the redrawing and drawing operation. The results of finite element analysis were compared with the experimental results and it is found that the maximum punch force (39.12KN) recorded with the production of a star shape drawn from the circular blank sheet when comparing the punch force (32.33 KN) recorded when redrawing the cylindrical shape into a star shape. This is due to the exposure of the cup produced drawn from the blank to the highest tensile stress. The highest value of the effective stress (709MPa) and effective strain (0.751) recorded with the star shape drawn from a circular blank sheet. The maximum value of lamination (8.707%) is recorded at the cup curling (the concave area) with the first method compared to the maximum value of lamination (5.822%) recorded at the cup curling (the concave area) with the second method because of this exposure to the highest concentration of stresses. The best distribution of thickness, strains, and stresses when producing a star shape by


2021 ◽  
pp. 1-24
Author(s):  
Hamidreza Mahdavi ◽  
Konstantinos Poulios ◽  
Christian F. Niordson

Abstract This work evaluates and revisits elements from the depth-sensing indentation literature by means of carefully chosen practical indentation cases, simulated numerically and compared to experiments. The aim is to close a series of debated subjects, which constitute major sources of inaccuracies in the evaluation of depth-sensing indentation data in practice. Firstly, own examples and references from the literature are presented in order to demonstrate how crucial self-similarity detection and blunting distance compensation are, for establishing a rigorous link between experiments and simple sharp-indenter models. Moreover, it is demonstrated, once again, in terms of clear and practical examples, that no more than two parameters are necessary to achieve an excellent match between a sharp indenter finite element simulation and experimental force-displacement data. The clear conclusion is that reverse analysis methods promising to deliver a set of three unique material parameters from depth-sensing indentation cannot be reliable. Lastly, in light of the broad availability of modern finite element software, we also suggest to avoid the rigid indenter approximation, as it is shown to lead to unnecessary inaccuracies. All conclusions from the critical literature review performed lead to a new semi-analytical reverse analysis method, based on available dimensionless functions from the literature and a calibration against case specific finite element simulations. Implementations of the finite element model employed are released as supplementary material, for two major finite element software packages.


2014 ◽  
Vol 915-916 ◽  
pp. 146-149
Author(s):  
Yong Sheng Wang ◽  
Li Hua Wu

The finite element model of the space KX-Joint was established using ANSYS software, and the failure mode and ultimate bearing capacity of KX-joint were researched. Calculation results show that the surface of chord wall on the roots of compression web members was into the plastic in K plane, and the holding pole without the plastic area and the local buckling failure happened in the surface of chord wall on the roots of Compression Web Members in X plane; The bearing capacity of the joint increased with the Chord diameter, which was appears in the form of power function.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668335
Author(s):  
Xiaoli Qi ◽  
Xiaochun Yin

This part of the article describes numerical simulations of the problem investigated experimentally. A three-dimensional finite element model of elastic–plastic for sphere falling on beam has been implemented using the nonlinear dynamic finite element software LS-DYNA. From the numerical simulations, it was found that the LS-DYNA is suitable to study complex sub-impact phenomenon, and good agreement is in general obtained between the simulation and experimental results. The numerical simulations show that the initial impact velocity, equivalent elasticity modulus, contact curvature radius of the sphere, and equivalent mass have great influence on the contact–impact time of the sub-impact, and an applicable range of the theoretical expression of contact–impact time of the sub-impact was determined. In addition, the numerical simulations demonstrate the ratios of maximum amplitudes of the first-, second-, and third-order vibrations to the maximum amplitudes of the beam vibrations, and the phase angle of the first-order vibration will change suddenly when the sub-impacts occur. Furthermore, the occurrence conditions of the sub-impacts were clarified numerically. It was found that the occurrence conditions of the sub-impacts can be represented by a mass ratio threshold, and the thickness or length of the beam has also a great influence on the occurrence of the sub-impacts. Once the sub-impacts occur, which would result in an uncertain behavior of the apparent coefficient of restitution.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1320
Author(s):  
Kaisong Li ◽  
Zhangke Wang ◽  
Xuefeng Liu

A semi-dieless drawing technology has the advantages of producing a large deformation in a single pass and achieving high-precision dimensions of the finished products. However, instabilities can easily occur in a technique with a large amount of deformation, resulting in its failure. Herein, the deformation behavior of a wire during semi-dieless drawing is studied by finite element simulations. The instability mechanism of the semi-dieless drawing is proposed and validated by experiments. The experiments are conducted under the following conditions: a heating temperature of 950 °C; a distance between the die and heating coil of 20 mm; a feeding speed of 0.25 mm/s; a drawing speed range of 0.38–0.53 mm/s, and a die diameter range of 1.8–2.4 mm. The results show that by increasing the drawing speed or decreasing die diameter, the diameter fluctuation of the dieless drawn wire increases, and the semi-dieless drawing process easily becomes unstable. The diameter of the entering wire shows a fluctuating increasing trend owing to the variation in the drawing speed, which results in the instability during the semi-dieless drawing. The validity of the finite element model is verified by comparing the numerically predicted value and experimentally measured value of the drawn wire diameter.


2015 ◽  
Vol 733 ◽  
pp. 591-594
Author(s):  
Yong Zhen Zhu ◽  
Kuo Yang ◽  
Qi Yang ◽  
Yun De Zhao

The CAD software was used to establish 3D model of frame of dump truck, and the finite element model was established through Hyper Mesh. The stress distributions of the frame in vertical accelerating, turning, twisting and climbing conditions were computed through finite element software when the dump truck was loaded 80t. The result is consistent with the actual situation of the frame, which proved that the approach of finite element analysis is feasible. And we proposed the improved method of the frame according to finite element results.


2012 ◽  
Vol 479-481 ◽  
pp. 457-461
Author(s):  
Dong Hui Chen ◽  
Xin Lu ◽  
Xing Wang Chai ◽  
Bao Gang Wang ◽  
Hong Xia Guo ◽  
...  

In this paper,soil parameters and the collected data were tested and processed, and the changing trends of force with drilling depth were obtained and the maximum force applying to the working components was picked up. Compared with the smooth working component, the force applying to the unsmooth working components is smaller. Some parameters needed in Drucker-Prager soil model were measured and modified according to the basic tests. The simulation model was built in the finite element software -ANSYS. The simulation result is consistent with the actual testing result, which confirms the finite element model is correct .


2010 ◽  
Vol 456 ◽  
pp. 103-114
Author(s):  
Shi Ling Xing ◽  
Jian Shu Ye ◽  
Hang Sun

In order to use finite element software to complete the design or calculation of bridge multi-pile foundation, this paper discusses the finite element model (FEM) of a bridge multi-pile based on the theory and provisions in Code for Design of Ground Base and Foundation of Highway Bridges and Culverts (CDGBFHBC 2007) of china. For the FEM of a bridge-multi pile foundation, cap is regarded as a rigid body, piles are taken as beams, and boundary constraints are a series of horizontal springs and vertical springs. First, the formula of stiffness for horizontal springs and bottom vertical spring is derived according to elastic ground base theory and winkler hypotheses. Secondly, for the friction pile, the stiffness of vertical springs on piles side is derived basis of the principle of friction generated and simplified distribution of pile shaft resistance. Then, the FEM of multi-pile needs pay attention to three issues: the simulation of connections between piles and cap, elastic modulus needs discount, and the weight for pile underneath the ground line (or local scour line) needs calculate by half. Taking pile section bending moment often control the design and calculation of pile into account, this paper gives a simplified FEM of pile. Finally, an example is used to introduce the application of the FEM of bridge multi-pile foundation.


2011 ◽  
Vol 675-677 ◽  
pp. 909-912 ◽  
Author(s):  
Zhi Zhu ◽  
Li Wen Zhang ◽  
Dong Jiang Wu

In this paper, a 2-D nonlinear thermo-mechanical coupled finite element model was developed to simulate the vacuum hot bulge forming process of rotor-can with the aid of finite element software MSC.Marc. Thermal physical and mechanical properties of materials vary with temperature in the model. In addition, the effects of high temperature creep properties of materials on the vacuum hot bulge forming process of rotor-can were considered. The temperature field, the stress-strain field and the displacement field of rotor-can during vacuum hot bulge forming process were calculated. This work is beneficial to understand the vacuum hot bulge forming process of rotor-can and lays a good foundation for future work.


2011 ◽  
Vol 94-96 ◽  
pp. 2005-2008 ◽  
Author(s):  
Yuan Wen Cao ◽  
Xue Jiao Huang ◽  
Li Ying Ma ◽  
Sheng Qiu ◽  
Shao Xiong Gui

In this paper a dynamical equation about vibratory drum - soil system was set based on the non-linear character of vibration compaction of vibratory roller. The finite element model of vibratory drum - soil system was established by the finite element software ABAQUS, with which the vibration compaction process of vibratory drum is simulated. According to the analysis of the vibration propagation on the soil surface, the longitudinal vibration propagation of soil, the stress and strain of the soil under the vibratory drum, results have proved that it is valid to simulate the interaction between vibratory drum and soil by the nonlinear finite element method, which offered a new way to research the interaction between vibratory drum and soil.


Sign in / Sign up

Export Citation Format

Share Document