Finite Element Simulation of Vacuum Hot Bulge Forming Process of Reactor Coolant Pump Rotor-Can

2011 ◽  
Vol 675-677 ◽  
pp. 909-912 ◽  
Author(s):  
Zhi Zhu ◽  
Li Wen Zhang ◽  
Dong Jiang Wu

In this paper, a 2-D nonlinear thermo-mechanical coupled finite element model was developed to simulate the vacuum hot bulge forming process of rotor-can with the aid of finite element software MSC.Marc. Thermal physical and mechanical properties of materials vary with temperature in the model. In addition, the effects of high temperature creep properties of materials on the vacuum hot bulge forming process of rotor-can were considered. The temperature field, the stress-strain field and the displacement field of rotor-can during vacuum hot bulge forming process were calculated. This work is beneficial to understand the vacuum hot bulge forming process of rotor-can and lays a good foundation for future work.

2011 ◽  
Vol 189-193 ◽  
pp. 2415-2420 ◽  
Author(s):  
Zhi Zhu ◽  
Li Wen Zhang ◽  
Guan Yu Song ◽  
Dong Jiang Wu

In this paper, a two-dimensional nonlinear thermo-mechanical coupled finite element model was developed to simulate the vacuum hot bulge forming process of rotor-can with the aid of finite element software msc.marc. A set of stress relaxation experiments were conducted to test the high temperature creep properties of hastelloy c-276 and the creep law of material was defined. Then, the finite element model was used to study creep deformation of rotor-can during vacuum hot bulge forming process. As a result, the temperature field and the stress-strain field are calculated and analyzed. Furthermore, the effects of holding temperature and holding time on creep deformation are also investigated. The optimal holding time range for the vacuum hot bulge forming process of rotor-can is from 2h to 3h.


2021 ◽  
pp. 1-24
Author(s):  
Hamidreza Mahdavi ◽  
Konstantinos Poulios ◽  
Christian F. Niordson

Abstract This work evaluates and revisits elements from the depth-sensing indentation literature by means of carefully chosen practical indentation cases, simulated numerically and compared to experiments. The aim is to close a series of debated subjects, which constitute major sources of inaccuracies in the evaluation of depth-sensing indentation data in practice. Firstly, own examples and references from the literature are presented in order to demonstrate how crucial self-similarity detection and blunting distance compensation are, for establishing a rigorous link between experiments and simple sharp-indenter models. Moreover, it is demonstrated, once again, in terms of clear and practical examples, that no more than two parameters are necessary to achieve an excellent match between a sharp indenter finite element simulation and experimental force-displacement data. The clear conclusion is that reverse analysis methods promising to deliver a set of three unique material parameters from depth-sensing indentation cannot be reliable. Lastly, in light of the broad availability of modern finite element software, we also suggest to avoid the rigid indenter approximation, as it is shown to lead to unnecessary inaccuracies. All conclusions from the critical literature review performed lead to a new semi-analytical reverse analysis method, based on available dimensionless functions from the literature and a calibration against case specific finite element simulations. Implementations of the finite element model employed are released as supplementary material, for two major finite element software packages.


2008 ◽  
Vol 392-394 ◽  
pp. 366-369
Author(s):  
Ming Wei Wang ◽  
Li Wen Zhang

The vacuum hot bulge forming has been used in aerospace industry to manufacture cylindrical workpiece with improved mechanical properties and reduced fabrication cost. Vacuum hot bulge forming is based on the material soften and the stress relaxation theory. Different from other metal forming techniques, deformation of the workpiece takes place well below yield point and the amount of plastic deformation is directly relaxed to heating temperature and holding time. In this paper, a two-dimension thermo-mechanical coupled finite element model was developed. In this model, nonlinear radiation heat transfer and thermal physical properties of material depending on temperature were considered. This paper carried out numerical simulation of vacuum hot bulge forming of BT20 Ti-alloy cylindrical workpiece by using finite element software MSC.Marc. The temperature field, deformation field and stress field of hot bulge forming of BT20 Ti-alloy cylindrical workpiece were calculated. Numerical simulation results were accorded with experimental ones, which provided for the practice production as theory bases.


2018 ◽  
Vol 1145 ◽  
pp. 123-128
Author(s):  
Ming Deng ◽  
Jiang Po Niu ◽  
Yi Long Ma ◽  
Lin Lv

The selection of the flow stress model of materials has a great influence on the plastic forming simulation of metal. For closed extrusion fine blanking, selecting the accurate and appropriate material flow stress model can make the finite element simulation closer to the real situation, and the simulation data is more reliable. In order to solve the accuracy problem of finite element simulation closed-extruding fine blanking, 5 types of flow stress fitting curve equations were obtained based on the data of sheet metal tensile test. With the secondary development of finite element software Deform-2D, the circular piece of closed-extruding fine blanking forming process was simulated, whose diameter is 14 mm and thickness is 30 mm. The simulation results of different rheological models were compared after physical experiment being carried out.The results show that Ludwik extrapolation rheological model is suitable for finite element simulation of closed-extruding fine blanking technology, which effectively improves closed-extruding fine blanking simulation accuracy. Lay the foundation for the application of closed-extrusion fine blanking in industry.


2014 ◽  
Vol 578-579 ◽  
pp. 282-286
Author(s):  
Pi Yuan Xu ◽  
Zhang Lin Zhai ◽  
Ya Feng Xu

The article researches seismic performance of joints of cellular steel column and steel beam by finite element simulation. Finite element model is established by using the finite element software reasonably. Considering about the hole position and the distance of center of hole as invariant moments, under low cyclic loading we can attain hysteretic curves and skeleton curves etc. which are compared and analyzed in different opening rate by simulated software. The results show that for a certain axial compression ratio (n=0.45) of joints of cellular steel column and beam, the reasonable opening rate can improve the seismic behavior of the joints.


2012 ◽  
Vol 472-475 ◽  
pp. 791-794
Author(s):  
Jin Song Liu ◽  
Neng Yong Ye ◽  
Shi Hong Zhang

Based on the actual field processing parameters, the finite element model of TP2 inner- -grooved copper tubes at the groove forming stage was established by using finite element software MSC. Marc in this paper. It shows that the simulation results are in agreement with the actual situation. The flowing condition of inner groove during metal deformation can be reflected exactly through this model. By the analysis on the metal force of spinning area, the revolving speed of motor and grooved plug and the drawing speed have a great influence on the folding defects.


2013 ◽  
Vol 281 ◽  
pp. 484-489
Author(s):  
Pei Qi Wang ◽  
Qin He Zhang ◽  
Bao Tian Dong ◽  
Ru Po Ma

In order to research the forming process of H-beam, based on the large H-beam production line of HN600x200, the Standard and Explicit solver of ABAQUS are synthetically used to establish finite element model for rolling process and inter-pass thermolysis process. The reciprocation multi-pass rolling process simulation procedure based on the re-meshing technology is used to simulate the whole production process form blanks to finish products, and the continuity of data is ensured. Based on the simulation results, the deformation and rolling force of the roller as well as the metal flowing law and temperature field of workpiece are discussed emphatically. The results clearly show that the displacement of roller contains the elastic deformation and the deflection, and the counterforce of left adds to the counterforce of right is about equal to the resultant force. The simulation results are compared with the measuring results, which proves the correctness of simulation.


2013 ◽  
Vol 791-793 ◽  
pp. 742-745 ◽  
Author(s):  
An Ning Zhang ◽  
Zhao Feng Zhu ◽  
Feng Zhu

In this paper, finite element software ANSYS is used to simulate a process of disc cutters of different diameter breaking rock, get the curves of the load of disc cutter of different diameter breaking rock and the curves of the stress exerting on the cutters when the disc cutters cutting different depth. According to the rock breaking mechanism of disc cutter, and established five kinds of disc cutter of different diameter broken rock finite element model, and the numerical simulation was carried out. The loads of disc cutters of different diameter breaking rock and the stress exerting on the cutters are different when the disc cutters cutting different depths. According to the result of the analysis, draw the curve graph of the load of disc cutter breaking rock and the stress exerting on the cutters when the disc cutters of different diameter cutting different depth. According to the curve diagram, the load of disc cutter of different diameter cutting a certain depth and the stress of exerting on the disc cutters can be gotten. The simulative result is instructive for improving the design of disc cutter parameters and improving the development efficiency.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091780
Author(s):  
Luca Quagliato ◽  
Dongwook Kim ◽  
Donghwi Park ◽  
Naksoo Kim

In the present research work, a finite element model of the electro-resistance welding pipe forming process chain is developed using the ABAQUS/Explicit software. The forming process, which is composed of 22 tandem roll stations, has been fully modeled in the developed finite element simulation. In order to account for the Bauschinger effect on the pipe material properties as a consequence of the loading and the unloading during the process, a non-linear kinematic hardening model has been utilized in all the proposed finite element simulation models. The constants for the non-linear kinematic hardening model were estimated by means of cyclic experiments on the K55 steel pipe material. In order to properly simulate the electric arc welding (electro-resistance welding) operation, the ABAQUS welding interface has been utilized to account for the joining between the two edges of the formed pipe as well as to assess the influence of the welding-induced temperature field on the residual stresses on the pipe material. The sizing operation, which is the final station of the electro-resistance welding process, has been also accounted in the developed finite element method model and is composed of six tandem rolls. To export and import the results between two different modules, a mapping strategy has been utilized and allowed exporting the element results, in terms of stress, strain, and temperature, and importing them into the following simulation module. Finally, in order to estimate the influence of each process station on the yield strength of the material, a finite element simple tension test simulation has been implemented in ABAQUS/Static, mapping the results of each station on the tensile specimen. This mapping operation allowed to estimate the yield stress of the material after each of the three process stations, a consequence of the residual stresses present in the material, and has been carried out on eight circumferential locations around the pipe, evenly spaced with a 22.5° angle. The model has been validated by comparing the geometrical results, in terms of average pipe diameter and thickness, obtained from the finite element model with those of the relevant industrial production, showing deviations equal to 1.25% and 1.35% (forming) and 1.29% and 1.43% (sizing), respectively, proving the reliability of the proposed process chain analysis simulation. The results will show how the process-induced residual stresses arising on the pipe material make the material yield strength to vary from station to station as well as having different values along the circumferential direction of the pipe.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


Sign in / Sign up

Export Citation Format

Share Document