Influence of Eu2+ Doped Contents on the Spectroscopic Features of Sr2-X MgSi2O7:xEu2+

2012 ◽  
Vol 476-478 ◽  
pp. 1232-1236
Author(s):  
Jia Zhe Guo ◽  
Ya Dong Li ◽  
Yan Lin Huang

Silicate-based Sr2-xMgSi2O7:xEu2+(x=0.01, 0.03, 0.05, 0.07) phosphors were synthesized by the high temperature solid-state reaction method. Phase purity and crystal structure of the phosphors were characterized using X-ray diffraction spectrometer. The optical excitation and emission spectra of Eu2+ ion were measured using luminescence spectrometer and fluorescence spectrophotometer. The emission spectra showed a strong blue luminescence peaked around 470 nm, corresponds to the 4f65d1 →4f7 transition on Eu2+. Two different average decay time confirmed that the Eu2+ cations may occupy in two different lattice sites and presents different spectroscopic features. With a broad absorption band extending from 224 to 450 nm, it is suggestive that the phosphors have a potential application in UV-LED chips (360-400 nm).

2011 ◽  
Vol 8 (1) ◽  
pp. 97-100
Author(s):  
Manish Verma ◽  
N. P. Lalla ◽  
D. M. Phase ◽  
V. K. Ahire

Polycrystalline samples of La1.8Sr0.20Cu1-yMnyO4 (0≤y≤0.15) were synthesized by solid state reaction method. The phase purity was confirmed by powder X-ray diffraction. The scanning electron microscopy was done on the La1.8Sr0.20Cu1-yMnyO4 (0≤y≤0.15) samples. The superconductivity and Transition temperature were studied by four probe resistivity temperature method. The transition temperatures were measured nearly 37 k and were unchanged on Mn doping at Cu site in La1.8Sr0.20CuO4.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Mourad Derbal ◽  
Lakhdar Guerbous ◽  
Ouadjaout Djamel ◽  
Chaminade Jean Pierre ◽  
Mohyddine Kadi-Hanifi

(, 0.5, 1, 5, and 10 at.%) polycrystalline powders blue phosphors were prepared via the classical solid-state reaction method. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation, and emission spectra were used to characterize phosphors. By analyzing the excitation and emission spectra of samples, the result indicates that there exists the energy transfer only from the group to the energy level of ion. On the other hand, the influence of the thulium concentration on the blue emission transition and and the emission of group are investigated.


2004 ◽  
Vol 19 (4) ◽  
pp. 1203-1207 ◽  
Author(s):  
Yan Wang ◽  
Chaoyang Tu ◽  
Changcang Huang ◽  
Zhenyu You

Yb3+-doped single-crystal Ca3Y2(BO3)4 with dimension φ20 × 55 mm was grown by the Czochralski method. The structure of it was determined by x-ray diffraction. It belongs to the orthorhombic system, space group Pnma, with the following parameters: a= 7.1690(4), b = 15.4758(8), c = 8.5587(6) Å, V = 949.55(10)Å3, Mr = 537.51, Z = 2, Dc = 3.8 g/cm3, (MoKa) = 0.71073 Å, F(000) = 508, μ = 6.927 mm-1, final R = 0.0670, and wR = 0.1542 for 2975 independent reflections. The structure of Yb:Ca3Y2(BO3)4 is made up of three set of M-oxygen distorted polyhedrons, and three set of BO3 planar triangles. Ca2+ and Y3+ ions occupy three M sites statistically. Yb3+ ions substitute Y3+ ions to enter these three lattices. The adsorption and emission spectra were measured. It exhibits a broad absorption band ranging from 850 to 1000 nm in the absorption spectrum, which is well matched with the emission wavelength of a laser diode. A broad emission spectrum ranging from 927.95 to 1102.7 nm was observed under the excitation of 895 nm.


2019 ◽  
Vol 12 (04) ◽  
pp. 1950057 ◽  
Author(s):  
Chao-Chao Guo ◽  
Qun Zeng ◽  
Chun-Feng Yao ◽  
Yan-Zhao Feng ◽  
Xi Chen ◽  
...  

Red phosphors with compositions of Li[Formula: see text]Nb[Formula: see text]Ti[Formula: see text]O3:3[Formula: see text]wt.% Eu[Formula: see text] [Formula: see text] were synthesized by solid-state reaction method. The samples were investigated by using X-ray diffraction (XRD) and photoluminescence spectroscopy, respectively. XRD results showed that all samples were main phase of Li2TiO3. Emission spectra of Li[Formula: see text]Nb[Formula: see text]Ti[Formula: see text]O3:3[Formula: see text]wt.% Eu[Formula: see text] powders showed strong red emission at 612[Formula: see text]nm (5D0–7F[Formula: see text] with 396[Formula: see text]nm excitation. In addition, the excitation and emission intensity increased up to [Formula: see text], and then decreased with further increasing of the x values. And the chromaticity coordinate (CIE) of the component with [Formula: see text] was superior to other components.


2014 ◽  
Vol 941-944 ◽  
pp. 647-652 ◽  
Author(s):  
Hui Hong Lin ◽  
Yan Ru Lin ◽  
Gui Po Fang

The phosphors Ca3(BO3)2: Ce3+, Ca3(BO3)2: Tb3+ and Ca3(BO3)2: Ce3+, Tb3+ were synthesized by the solid-state reaction method at high temperature. The phase purity was characterized by the powder x-ray diffraction (XRD). The luminescence properties were investigated by ultraviolet (UV)-Vis spectra. For the phosphor Ca3(BO3)2: Ce3+, the lowest 5d levels, the emission and the Stokes shifts of Ce3+ in the host lattice are identified. For the phosphor Ca3(BO3)2: Tb3+, the f-d transitions of Tb3+ in the host lattice are assigned and discussed. Moreover, the energy transfer phenomenon between Ce3+ and Tb3+ in Ca3(BO3)2: Ce3+, Tb3+ has been discussed. The emission of Tb3+ is remarkably enhanced due to energy transfer from Ce3+ to Tb3+ when Ce3+, Tb3+ doped together in Ca3(BO3)2.


2016 ◽  
Vol 34 (2) ◽  
pp. 412-417
Author(s):  
Esra Öztürk

AbstractIn this work, aluminate type phosphorescence materials were synthesized via the solid state reaction method and the photoluminescence (PL) properties, including excitation and emission bands, were investigated considering the effect of trace amounts of activator (Eu3+) and co-activator (Dy3+). The estimated thermal behavior of the samples at certain temperatures (> 1000 °C) during heat treatment was characterized by differential thermal analysis (DTA) and thermogravimetry (TG). The possible phase formation was characterized by X-ray diffraction (XRD). The morphological characterization of the samples was performed by scanning electron microscopy (SEM). The PL analysis of three samples showed maximum emission bands at around 610 nm, and additionally near 589 nm, 648 nm and 695 nm. The bands were attributed to typical transitions of the Eu3+ ions.


2015 ◽  
Vol 5 (01) ◽  
pp. 31
Author(s):  
Resky Irfanita ◽  
Asnaeni Ansar ◽  
Ayu Hardianti Pratiwi ◽  
Jasruddin J ◽  
Subaer S

The objective of this study is to investigate the effect of sintering temperature on the synthesis of SiC produced from rice husk ash (RHA) and 2B graphite pencils. The SiC was synthesized by using solid state reaction method sintered at temperatures of 750°C, 1000°C and 1200°C for 26 hours, 11.5 hours and 11.5 hours, respectively. The quantity and crystallinity level of SiC phase were measured by means of Rigaku MiniFlexII X-Ray Diffraction (XRD). The microstructure of SiC was examined by using Tescan Vega3SB Scanning Electron Microscopy (SEM). The XRD results showed that the concentration (wt%) of SiC phase increases with the increasing of sintering temperature. SEM results showed that the crystallinity level of SiC crystal is improving as the sintering temperature increases


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


Author(s):  
Hongqiang Cui ◽  
Yongze Cao ◽  
Lei Zhang ◽  
Yuhang Zhang ◽  
Siying Ran ◽  
...  

Er3+ with different concentrations doped K2Yb(PO4)(MoO4) phosphors were prepared by a solid-state reaction method, and the layered orthorhombic crystal structure of the samples was confirmed by X-ray diffraction (XRD). Under...


2021 ◽  
Vol 321 ◽  
pp. 23-27
Author(s):  
Simona Ravaszová ◽  
Karel Dvořák

The paper is focused on one of the most important component of Portland clinker-on the tricalcium silicate. The study reported in this article is focuses on the changes in crystallite size of synthetic tricalcium silicate obtained using solid state reaction method. Crystallite size changes are monitored during the grinding in three types of laboratory mills in two different conditions. Changing in crystallite size at various grinding time up to 120 minutes are studied with the aid of X-ray diffraction and using the Scherrer equation. It has been found that the most efficient laboratory mill in terms of speed and fineness of the material was the planetary mill.


Sign in / Sign up

Export Citation Format

Share Document