Study of Crystal Yb3+:Ca3Y2(BO3)4

2004 ◽  
Vol 19 (4) ◽  
pp. 1203-1207 ◽  
Author(s):  
Yan Wang ◽  
Chaoyang Tu ◽  
Changcang Huang ◽  
Zhenyu You

Yb3+-doped single-crystal Ca3Y2(BO3)4 with dimension φ20 × 55 mm was grown by the Czochralski method. The structure of it was determined by x-ray diffraction. It belongs to the orthorhombic system, space group Pnma, with the following parameters: a= 7.1690(4), b = 15.4758(8), c = 8.5587(6) Å, V = 949.55(10)Å3, Mr = 537.51, Z = 2, Dc = 3.8 g/cm3, (MoKa) = 0.71073 Å, F(000) = 508, μ = 6.927 mm-1, final R = 0.0670, and wR = 0.1542 for 2975 independent reflections. The structure of Yb:Ca3Y2(BO3)4 is made up of three set of M-oxygen distorted polyhedrons, and three set of BO3 planar triangles. Ca2+ and Y3+ ions occupy three M sites statistically. Yb3+ ions substitute Y3+ ions to enter these three lattices. The adsorption and emission spectra were measured. It exhibits a broad absorption band ranging from 850 to 1000 nm in the absorption spectrum, which is well matched with the emission wavelength of a laser diode. A broad emission spectrum ranging from 927.95 to 1102.7 nm was observed under the excitation of 895 nm.

2012 ◽  
Vol 476-478 ◽  
pp. 1232-1236
Author(s):  
Jia Zhe Guo ◽  
Ya Dong Li ◽  
Yan Lin Huang

Silicate-based Sr2-xMgSi2O7:xEu2+(x=0.01, 0.03, 0.05, 0.07) phosphors were synthesized by the high temperature solid-state reaction method. Phase purity and crystal structure of the phosphors were characterized using X-ray diffraction spectrometer. The optical excitation and emission spectra of Eu2+ ion were measured using luminescence spectrometer and fluorescence spectrophotometer. The emission spectra showed a strong blue luminescence peaked around 470 nm, corresponds to the 4f65d1 →4f7 transition on Eu2+. Two different average decay time confirmed that the Eu2+ cations may occupy in two different lattice sites and presents different spectroscopic features. With a broad absorption band extending from 224 to 450 nm, it is suggestive that the phosphors have a potential application in UV-LED chips (360-400 nm).


CrystEngComm ◽  
2021 ◽  
Author(s):  
Shoujun Ding ◽  
Hao Ren ◽  
Hongyuan Li ◽  
Wenpeng Liu ◽  
Qingli Zhang ◽  
...  

In this work, a high-quality 2at% Dy3+ doped Gd3Sc2Al3O12 (Dy:GSAG) single crystal was grown successfully by the Czochralski method for the first time. Spectroscopic properties of the crystal were investigated...


2015 ◽  
Vol 68 (11) ◽  
pp. 1727 ◽  
Author(s):  
Florian Baur ◽  
Thomas Jüstel

This work investigates the optical properties of Eu3+-activated La2Zr3(MoO4)9. A series of solid solutions with Eu3+ concentrations in the range of 0–100 % were prepared by conventional high temperature solid-state synthesis. An unusual change in the lattice parameters was observed. The phosphor exhibits a broad absorption band in the UV spectral region, and measurements on the non-doped material at 100 K were conducted to elucidate the nature of the absorption band. As demonstrated, Mo6+ charge transfer absorption negatively influences the luminescence efficiency of the phosphor. The temperature-dependent emission spectra revealed that the emission intensity exhibits a bi-sigmoidal temperature dependence. This behaviour results from competing absorption via Mo6+ charge transfer processes, which strongly decrease the efficiency of the phosphor. For application purposes, it is therefore advisable to choose materials that do not exhibit host absorption in the spectral range where excitation is expected.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Yong Gan ◽  
Fubo Gu ◽  
Dongmei Han ◽  
Zhihua Wang ◽  
Guangsheng Guo

Peanut-like and flower-like zinc oxide 3D architectures were synthesized via a facile biomimetic process using gelatin as matrix. Techniques of XRD, SEM, HRTEM, FT-IR, and UV-vis absorption spectra were used to characterize the structure and property of the zinc oxide architectures. The experimental results show that the peanut-like ZnO and flower-like ZnO architectures can be obtained through changing theZn2+concentration or the aging time. FT-IR spectra indicate that theZn2+is coupled with the C=O bond of the gelatin molecules through the electrostatic interaction. Based on the experimental process, the possible growth mechanism of the ZnO 3D architectures is proposed. UV-vis absorption spectrum of the peanut-like ZnO has a broad absorption band in the UV region, and the blue-shifting of the band is observed.


1994 ◽  
Vol 14 (1-3) ◽  
pp. 155-160 ◽  
Author(s):  
Tatsuhisa Kato

Absorption spectra are detected for C60− and C602− produced electrolytically in solution at room temperature. Theoretical analysis of the spectrum of C60− by CNDO/S calculations gives an interpretation of the characteristic near-IR bands, the weak visible bands, and the strong bands in the UV region. The emission spectrum of C60− is a mirror image of the near-IR absorption band, and the detection of the emission reconfirms our original assignment of the absorption spectrum. The nature of the spectrum of C602− is characterized by a similar orbital picture to that of C60−. Further laser experiments of significance are proposed.


2008 ◽  
Vol 8 (11) ◽  
pp. 5776-5780 ◽  
Author(s):  
C. Manikyala Rao ◽  
V. Sudarsan ◽  
R. S. Ningthoujam ◽  
U. K. Gautam ◽  
R. K. Vatsa ◽  
...  

ZnGa2O4 nanoparticles doped with lanthanide ions (Tb3+ and Eu3+) were prepared at a low temperature of 120 °C based on urea hydrolysis in ethylene glycol medium. X-ray diffraction studies have confirmed that strain associated with nanoparticles changes as Tb3+ gets incorporated in the ZnGa2O4 lattice. Based on steady state emission and excitation studies of ZnGa2O4:Tb nanoparticles, it has been inferred that ZnGa2O4 host is characterized by a broad emission around 427 nm and there exists energy transfer between the host and Tb3+ ions. Unlike this, for ZnGa2O4:Eu nanoparticles, very poor energy transfer between the host and Eu3+ ions is observed. These nanoparticles when coated with ligands like oleic acid results in their improved dispersion in organic solvents like chloroform and dichloromethane.


2019 ◽  
Vol 484 (6) ◽  
pp. 698-702
Author(s):  
A. D. Pugachev ◽  
M. B. Lukyanova ◽  
V. V. Tkachev ◽  
B. S. Lukyanov ◽  
N. I. Makarova ◽  
...  

The synthesis and study of the structure and photochromic properties of the new salt spiropyrans of the indoline series containing chlorine and bromine atoms as a substituent at the 6' position in 2H-chromene moiety are presented. The structure of the obtained compounds was confirmed by NMR 1H spectroscopy and X-ray diffraction analysis. The compounds are photochromic; the long-wavelength maximum of the absorption band of their open photoinduced form has a significant hypsochromic shift, and the lifetime substantially increases in comparison with the fluorine analog.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2326
Author(s):  
Sungjun Yang ◽  
Sangmoon Park

Optical materials composed of La1-p-qBipEuqO0.65F1.7 (p = 0.001–0.05, q = 0–0.1) were prepared via a solid-state reaction using La(Bi,Eu)2O3 and NH4F precursors at 1050 °C for two hours. X-ray diffraction patterns of the phosphors were obtained permitting the calculation of unit-cell parameters. The two La3+ cation sites were clearly distinguished by exploiting the photoluminescence excitation and emission spectra through Bi3+ and Eu3+ transitions in the non-stoichiometric host lattice. Energy transfer from Bi3+ to Eu3+ upon excitation with 286 nm radiation and its mechanism in the Bi3+- and Eu3+-doped host structures is discussed. The desired Commission Internationale de l’Eclairage values, including emissions in blue-green, white, and red wavelength regions, were obtained from the Bi3+- and Eu3+-doped LaO0.65F1.7 phosphors.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Wei Guan ◽  
Kuang He ◽  
Jianwei Du ◽  
Yong Wen ◽  
Mingshan Li ◽  
...  

The synthesized g-C3N4/MoS2 composite was a high-efficiency photocatalytic for hypophosphite oxidation. In this work, a stable and cheap g-C3N4 worked as the chelating agent and combined with the MoS2 materials. The structures of the fabricated g-C3N4/MoS2 photocatalyst were characterized by some methods including X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS). Moreover, the photocatalytic performances of various photocatalysts were measured by analyzing the oxidation efficiency of hypophosphite under visible light irradiation and the oxidation efficiency of hypophosphite using the g-C3N4/MoS2 photocatalyst which was 93.45%. According to the results, the g-C3N4/MoS2 composite showed a promising photocatalytic performance for hypophosphite oxidation. The improved photocatalytic performance for hypophosphite oxidation was due to the effective charge separation analyzed by the photoluminescence (PL) emission spectra. The transient photocurrent response measurement indicated that the g-C3N4/MoS2 composites (2.5 μA cm–2) were 10 times improved photocurrent intensity and 2 times improved photocurrent intensity comparing with the pure g-C3N4 (0.25 μA cm–2) and MoS2 (1.25 μA cm–2), respectively. The photocatalytic mechanism of hypophosphite oxidation was analyzed by adding some scavengers, and the recycle experiments indicated that the g-C3N4/MoS2 composite had a good stability.


Sign in / Sign up

Export Citation Format

Share Document