Optimization of a Triangular Slot Shape in a Tire Tread Block by Using the Finite Element Analysis and MPSO

2012 ◽  
Vol 505 ◽  
pp. 424-428
Author(s):  
T. Dolwichai ◽  
J. Limtragool ◽  
S. Bureerat

The work of this paper presents the use of MPSO which is an evolutionary optimizer. The work objective is finding the optimal shape of triangular slot in a tire tread block. The numbers of design parameters with triangular slot are 9. They are used to characterize size and position of the triangular slot in a tire tread block. The optimization methods are implemented to solve two objectives. First, the normal contact stress at contact patch region must be lowest and second, the friction contact stress at the same region must be highest. Therefore, the problem type is bi-objective optimization. The finite element analyses are simulated by modeling of tire tread block contacting to the friction surface with commercial finite element program (ANSYS). The models are simulated as compressing and sliding or braking situation. The tire tread block is modeled as hyperelastic material which used the three basic tests, i.e., uni-axial tensile test, planar shear test and equal bi-axial tensile test. The best fitted of hyperelastic material model for the work is Ogden Hyper Foam order 3th. The results of work are present as the mean of design parameters which are accepted for two objectives.

2014 ◽  
Vol 638-640 ◽  
pp. 1128-1134
Author(s):  
Shao Jie Gu ◽  
Xin Wen Yang ◽  
Song Liang Lian

Wheel-rail contact stress is foundation of the relationship between wheel and rail, and also an important basis for investigating further wear, surface damage and other problems of wheel and rail system. A three dimension elastic-plastic wheel/rail contact model is established using non-linear finite element method. The changes of wheel/rail normal contact stress, Mises stress and elastic-plastic deformations are analyzed under different conditions in heavy haul railway. A method is provided for a foundation of the future study of wheel-rail contact wear, fatigue and cracks germination and development in this paper.


2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


2011 ◽  
Vol 314-316 ◽  
pp. 1218-1221
Author(s):  
Hao Min Huang

Conventional methods of design to be completed ordinary hydraulic transmission gear gearbox design, but for such a non-planet-rule entity, and the deformation of the planet-gear contact stress will have a great impact on the planet gear, it will be very difficult According to conventional design. In this paper, ANSYS software to the situation finite element analysis, the planetary gear to simulate modeling study.


2014 ◽  
Vol 496-500 ◽  
pp. 1007-1011
Author(s):  
Jian Hua Fang ◽  
Wei Yan

The design of seal device that can be used in carbide actor is a real problems.This paper presents a kind of oblique-cone-slid-ring (OCSR) assembly seal device that can self-compensate the seal wear in application. The max contact stress on the seal surface and other contact face is far bigger than the work stress of sealed medium in carbide actor. That means the design satisfies the user demand . Keywords: oblique-cone-sliding-ring (OCSR) assembly seal; self-compensation to seal wear; finite element analysis; contact stress;


2014 ◽  
Vol 501-504 ◽  
pp. 731-735
Author(s):  
Li Zhang ◽  
Kang Li

This paper analyzes the influence degree of related design parameters of wire-mesh frame wallboard on deformation through finite element program, providing theoretical basis for the design and test of steel wire rack energy-saving wallboard.


2013 ◽  
Vol 313-314 ◽  
pp. 1038-1041
Author(s):  
Shou Jun Wang ◽  
Xing Xiong ◽  
Chao Li

According to uncertainty of the design parameters for large span truss of installing wave-maker, in order to avoid the waste of materials,the truss is analyzed based on the finite element analysis software ANSYS to find out its weaknesses and various parts of the deformation. On the premise of ensuring the intensity and stiffness, the weight of the truss is reduced by adjusting its sizes and selecting different profiles, so as to achieve the optimization of the truss of installing wave-maker.


Sign in / Sign up

Export Citation Format

Share Document