Determination of Kinetic Parameters of Maize Starch in Air Using Thermogravimetric Analysis

2012 ◽  
Vol 508 ◽  
pp. 114-117
Author(s):  
Chun Miao Yuan ◽  
Chang Li ◽  
Gang Li ◽  
Pei Hong Zhang

Maize starch is abundant in quantity in China. The hazard from dust explosion of maize starch was very great. Number simulation is a good way to predict the consequent of dust explosion, but the known of reaction kinetics of hazardous materials is necessary. The objective of this research was to determine the reaction kinetics of maize starch using thermo-gravimetric analyses. Thermo-gravimetric analyses of maize starch were performed at heating rates of 5, 10, and 15 min-1 in an air atmospheres. The weight losses of maize starch in an air atmosphere were found to occur in three stages. The parameters of the reaction kinetics were obtained in Stage and .

2018 ◽  
Vol 18 (44) ◽  
pp. 20-23
Author(s):  
Jargalmaa S ◽  
Tsatsral G ◽  
Battsetseg M ◽  
Batkhishig D ◽  
Ankhtuya A ◽  
...  

Thermal analysis was used for the thermal characterization of the coal samples. The experiments were performed to study the pyrolysis and gasification kinetics of typical Mongolian brown coals. Low rank coals from Shivee ovoo, Ulaan ovoo, Aduun chuluun and Baganuur deposits have been investigated. Coal samples were heated in the thermogravimetric apparatus under argon at a temperature ranges of 25-1020ºC with heating rates of 10, 20, 30 and 40ºC/min. Thermogravimetry (TG) and derivative thermogravimetry (DTG) were performed to measure weight changes and rates of weight losses used for calculating the kinetic parameters. The activation energy (Ea) was calculated from the experimental results by using an Arrhenius type kinetic model.


2019 ◽  
Vol 42 (6) ◽  
pp. 953-961 ◽  
Author(s):  
S. Lladó Maldonado ◽  
J. Krull ◽  
D. Rasch ◽  
P. Panjan ◽  
A. M. Sesay ◽  
...  

2017 ◽  
Vol 114 ◽  
pp. 259-270 ◽  
Author(s):  
Mohammad Ramezani ◽  
Priscilla Tremain ◽  
Elham Doroodchi ◽  
Behdad Moghtaderi

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7877
Author(s):  
Maja Ivanovski ◽  
Aleksandra Petrovic ◽  
Irena Ban ◽  
Darko Goricanec ◽  
Danijela Urbancl

The torrefaction process upgrades biomass characteristics and produces solid biofuels that are coal-like in their properties. Kinetics analysis is important for the determination of the appropriate torrefaction condition to obtain the best utilization possible. In this study, the kinetics (Friedman (FR) and Kissinger–Akahira–Sunose (KAS) isoconversional methods of two final products of lignocellulosic feedstocks, miscanthus (Miscanthus x giganteus) and hops waste (Humulus Lupulus), were studied under different heating rates (10, 15, and 20 °C/min) using thermogravimetry (TGA) under air atmosphere as the main method to investigate. The results of proximate and ultimate analysis showed an increase in HHV values, carbon content, and fixed carbon content, followed by a decrease in the VM and O/C ratios for both torrefied biomasses, respectively. FTIR spectra confirmed the chemical changes during the torrefaction process, and they corresponded to the TGA results. The average Eα for torrefied miscanthus increased with the conversion degree for both models (25–254 kJ/mol for FR and 47–239 kJ/mol for the KAS model). The same trend was noticed for the torrefied hops waste samples; the values were within the range of 14–224 kJ/mol and 60–221 kJ/mol for the FR and KAS models, respectively. Overall, the Ea values for the torrefied biomass were much higher than for raw biomass, which was due to the different compositions of the torrefied material. Therefore, it can be concluded that both torrefied products can be used as a potential biofuel source.


2003 ◽  
Vol 770 ◽  
Author(s):  
Andrew R. Wilkinson ◽  
Robert G. Elliman

AbstractHydrogen passivation of non-radiative defects increases the luminescence intensity from silicon nanocrystals. In this study, photoluminescence (PL) and time-resolved PL were used to investigate the chemical kinetics of the hydrogen passivation process. Isochronal and isothermal annealing sequences were used to determine the reaction kinetics for the absorption and desorption of hydrogen, using the generalised consistent simple thermal (GST) model proposed by Stesmans for Pb defects at planar Si/SiO2 interfaces. This included determination of the activation energies and rate constants for the forward and reverse reactions as well as the associated spread in activation energies. The reaction kinetics determined from such measurements were found to be in excellent agreement with those for the passivation of Pb defects at planar Si/SiO2 interfaces, suggesting the nanocrystal emission process is also limited by such defects. These results provide useful model data as well as insight into the processing conditions needed to achieve optimum passivation in H2. As an extension to the work, a preliminary study into passivation by atomic hydrogen was pursued via a post-metallization Al anneal (alneal). A considerable gain in luminescence efficiency was achieved over the previously optimised passivation in H2.


2014 ◽  
Vol 33 (4) ◽  
pp. 319-323 ◽  
Author(s):  
Jun-Hao Liu ◽  
Guo-Hua Zhang ◽  
Kuo-Chih Chou

AbstractCarbon dioxide is a greenhouse gas and substantially affects the global warming and climate change, so study on the adsorption of carbon dioxide is very urgent. As a new CO2 captor, Ba2Fe2O5 was prepared by the solid state reaction of Fe2O3 with BaCO3, following formula Fe2O3 + 2BaCO3 = Ba2Fe2O5 + 2CO2. The reaction kinetics in isothermal condition was investigated by using the method of thermo-gravimetric analyzer (TGA). It was found that the reaction of Fe2O3 with BaCO3 was controlled by the diffusion step in the product layer, and the kinetics process could be described by the RPP model (Real Physical Picture) with the apparent activation energy extracted to be 161.122 kJ/mol.


Sign in / Sign up

Export Citation Format

Share Document