The Design on Heating System for Experiment of Solar Energy and Geothermal-Source Heat Pump

2012 ◽  
Vol 512-515 ◽  
pp. 194-197
Author(s):  
Ying Ling Cai ◽  
Yin Long Wu ◽  
Hua Zhang ◽  
Ji Wei Li

Through the study on the project, we can easily find that if we do not need heat the whole day, adopting the dynamic load method to calculate the heating load is more advisable compared to adopting a steady-state one, especially when we select the equipment. After establishing the mathematical model of the project, under the premise of meeting the heating load, considered the economy, the optimal solar collector area of this project is 11.1 square meters. In addition, through simulating the project, we can learn that the best azimuth of solar collectors in Shanghai is south by east 22.5 °.

1994 ◽  
Vol 116 (2) ◽  
pp. 88-93 ◽  
Author(s):  
E. Hahne ◽  
M. Hornberger

At Stuttgart University, a solar heating system for an office building with laboratories and lecture rooms was installed in 1985. It consists of 211 m2 of unglazed solar collectors, a 1050 m3 water-flooded pebble bed heat store, and a heat pump. Heat can be supplied to the store from the solar collectors or from a power station (as waste heat). The whole system has worked successfully for five years under varied strategies. In the first two heating periods, the heating strategy was aimed to collect as much solar energy as possible. Thus, about 60 percent of the heat demand could be covered by solar energy; but the yearly heat pump coefficient of performance (COP) was only around 2.76. With an improved heat pump, a monthly COP of 3.6 was obtained. Heat losses from the storage amounted to about 20 percent.


2013 ◽  
Vol 790 ◽  
pp. 160-164
Author(s):  
Yong An Ao ◽  
Gang Li ◽  
Wei Xin Kong ◽  
Qi Feng

The research, based on combination system of solar energy and municipal heating network, studied the running scheme of combination system of solar energy and municipal heating network through ways of experiments and theoretical calculation of the mathematical model. Firstly, the research established mathematical model of heat equilibrium of the combination system of solar energy and municipal heating network; secondly, keeping the indoor heat load steady, compared the dynamic heat load provided by solar collector with that needed by heated room at the same time,determined time spans of the network stopping service and the heat load added by the network within 24 h. In the research we took a heating period in a typical room in Shenyang for example, under the conditions of low temperature floor radiant with heating index standard of 50W/ m2 and 50°C of the average supplied water temperature, 40 °C of the return water temperature, calculated and verified the established mathematical model. The results include: when the heat load provided by solar collector is greater or less than the heat needed by the room, how many heat amount should be supplied by the running network and the amount of water flow within the network pipes correspondingly, and how long the network runs or stops. The final conclusions include: whether the running scheme of the combination system can save energy? the conditions of energy saving in running a combination system, and whether the system can bring environmental benefits.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5552
Author(s):  
Chuanhui Zhu ◽  
Shubin Yan ◽  
Xiaodong Dong ◽  
Wei Zhang ◽  
Biyi Huang ◽  
...  

With the rapid development of industrialization, the excessive use of fossil fuels has caused problems such as increased greenhouse gas emissions and energy shortages. The development and use of renewable energy has attracted increased attention. In recent years, solar heat pump heating technology that uses clean solar energy combined with high-efficiency heat pump units is the development direction of clean heating in winter in northern regions. However, the use of solar energy is intermittent and unstable. The low-valley electricity policy is a night-time electricity price policy. Heat pump heating has problems such as frosting and low efficiencies in cold northern regions. To solve these problems, an exergy analysis model of each component of a phase-change heat-storage coupled solar heat pump heating system was established. Exergy analysis was performed on each component of the system to determine the direction of optimization and improvement of the phase-change heat-storage coupled solar heat pump heating system. The results showed that optimizing the heating-end heat exchanger of the system can reduce the exergy loss of the system. When the phase-change heat-storage tank meets the heating demand, its volume should be reduced to lower the exergy loss of the tank heat dissipation. Air-type solar collectors can increase the income exergies of solar collectors.


2005 ◽  
Vol 128 (2) ◽  
pp. 173-177 ◽  
Author(s):  
L. H. Alva S. ◽  
J. E. González ◽  
N. Dukhan

This paper investigates the technical feasibility of innovative solar collectors. The proposed collectors have a phase change material (PCM) integrated into them as the storage mechanism. The PCM-integrated solar collector eliminates the need of conventional storage tanks, thus reducing cost and space. The present work uses a paraffin-graphite composite as the PCM to increase the conductivity of the PCM matrix. The paraffin’s melting point is around 89°C, which is appropriate for use in single-effect absorption systems. The mathematical model that describes the thermal process in the PCM is presented and differs from the analysis of conventional flat plate solar collectors making use of the lumped capacitance method which neglects spatial variations. The proposed model is calibrated favorably with a more detailed mathematical model that uses finite differences and considers temporal and spatial variations. Results for the collectors’ thermal performance are presented along with the effects of the composition of the PCM. The results for the PCM integrated collector proposed here are very encouraging. Therefore, there is an indication that conventional storage tanks may be replaced for the PCM integrated in the solar collector.


2021 ◽  
Vol 17 ◽  
pp. 1191-1200
Author(s):  
M. Kunelbayev ◽  
R. Omarov ◽  
E. Kurt ◽  
D. Omar

In this paper, a new system is proposed to improve the thermodynamic and economic indicators of solar room heating. The heat pump is integrated with a conventional solar heating system, in which the temperature of the collected heat is reduced by 20 °C to 30 °C to increase the efficiency of solar energy collection. The low-temperature heat collected by the solar collector is increased using a heat pump to generate high-temperature heat for indoor heating in winter and low-pressure process steam for industrial use in other seasons. The results show that the efficiency of the solar collector has increased by 30.50%, its annual effective operating time has reached 2000 hours, which is about four times more than that of a conventional solar heating system. In addition, the parameters of the solar collector area, the volume of the storage tank and the power of the heat pump have been optimized. This work provides a new way to use solar energy more efficiently and economically. Energy analysis shows that with the new flat solar collectors, the average annual values were 2.5 kW, and also high, the COP system in November was 4%.


2021 ◽  
Vol 03 (04) ◽  
pp. 31-34
Author(s):  
D. Sobirova ◽  
◽  
M. Karimova ◽  

The article calculates the thermal energy required for the correct choice of a heat pump and solar collector, which is part of a combined heating system, and the choice of their type and quantity based on the calculations performed and the profitability of water-based solar collectors, which are part of combined heating systems.


2020 ◽  
Vol 2 (2) ◽  
pp. 69-74
Author(s):  
S. HORIASHCHENKO ◽  
◽  
Yu. KRAVCHIK ◽  
O. PIDGORNYI ◽  
◽  
...  

Solar energy is widely used in cases where the inaccessibility of other energy sources in combination with a sufficient amount of solar radiation justifies it economically. With the help of a system of solar collectors, you can significantly reduce energy costs for hot water supply and heating. In addition, the use of this system helps reduce CO2 emissions. The potential of solar energy in Ukraine is quite high. According to the climatic conditions of our region, solar activity is slightly lower than in the southern regions, so the use of flat solar collectors, which use both direct and scattered solar radiation, is effective for our region. The use of heat collectors in the home for water supply and heating of small areas is economically feasible, as it does not require significant costs. Heat supply plants using non-traditional energy sources are promising in terms of fuel savings and reduction of harmful effects on the environment. To increase the service life, economical use of heat and fuel, efficient operation of the installation requires the use of automation. The article considers the development of a mathematical model of a heat supply installation based on a solar collector. For automated control of the heat supply installation, it is necessary to know the properties of this installation as a whole and its individual elements. For this purpose, models of individual elements of the heat supply installation in a linear approximation are considered. The solar collector is conditionally divided into two parts. The model of the ground heat exchanger is developed. Also e battery models and consumer premises. The given matrices of elements of installation of heat supply are united in the uniform system of matrices. The obtained results allow estimating in advance efficiency of their use and economic attractiveness.


2021 ◽  
Vol 11 (9) ◽  
pp. 4130
Author(s):  
Oleksij Fomin ◽  
Alyona Lovska ◽  
Václav Píštěk ◽  
Pavel Kučera

The study deals with determination of the vertical load on the carrying structure of a flat wagon on the 18–100 and Y25 bogies using mathematic modelling. The study was made for an empty wagon passing over a joint irregularity. The authors calculated the carrying structure of a flat wagon with the designed parameters and the actual features recorded during field tests. The mathematical model was solved in MathCad software. The study found that application of the Y25 bogie for a flat wagon with the designed parameters can decrease the dynamic load by 41.1% in comparison to that with the 18–100 bogie. Therefore, application of the Y25 bogie under a flat wagon with the actual parameters allows decreasing the dynamic loading by 41.4% in comparison to that with the 18–100 bogie. The study also looks at the service life of the supporting structure of a flat wagon with the Y25 bogie, which can be more than twice as long as the 18–100 bogie. The research can be of interest for specialists concerned with improvements in the dynamic characteristics and the fatigue strength of freight cars, safe rail operation, freight security, and the results of the research can be used for development of innovative wagon structures.


Author(s):  
Andy Walker ◽  
Fariborz Mahjouri ◽  
Robert Stiteler

This paper describes design, simulation, construction and measured initial performance of a solar water heating system (360 Evacuated Heat-Pipe Collector tubes, 54 m2 gross area, 36 m2 net absorber area) installed at the top of the hot water recirculation loop in the Social Security Mid-Atlantic Center in Philadelphia. Water returning to the hot water storage tank is heated by the solar array when solar energy is available. This new approach, as opposed to the more conventional approach of preheating incoming water, is made possible by the thermal diode effect of heat pipes and low heat loss from evacuated tube solar collectors. The simplicity of this approach and its low installation costs makes the deployment of solar energy in existing commercial buildings more attractive, especially where the roof is far removed from the water heating system, which is often in the basement. Initial observed performance of the system is reported. Hourly simulation estimates annual energy delivery of 111 GJ/year of solar heat and that the annual efficiency (based on the 54 m2 gross area) of the solar collectors is 41%, and that of the entire system including parasitic pump power, heat loss due to freeze protection, and heat loss from connecting piping is 34%. Annual average collector efficiency based on a net aperture area of 36 m2 is 61.5% according to the hourly simulation.


2021 ◽  
Vol 25 (1) ◽  
pp. 130-139
Author(s):  
Е.G. Komarov ◽  
◽  
V.V. Lozovetsky ◽  
V.V. Lebedev ◽  
V.M. Cherkina ◽  
...  

Results of design modeling of air-conditioning and central air of premises of server stations are presented. The estimation of thermal balance of typical server station is made. The potential of thermal energy which can be used is estimated it is useful for needs of central heating, to save power resources, and not to pollute environment thermal emissions. The detailed analysis of components of is material-power balance is made. The mathematical model of central air is developed for these purposes. Analysis problems of the heat substances exchange processes, the drainage of air connected with processes, occurring at its cooling are considered. The designing and operation problems interfaced with the heat substances exchange in air coolers are considered. The heat pump scheme of system is offered the central heating, utilizing warmly server station at air conditioning indoors. The model is offered and results of optimization of parameters heat pump schemes are considered. Results can be applied at designing of central airs of premises of server stations with passing recycling of thermal emissions for needs of central heating.


Sign in / Sign up

Export Citation Format

Share Document