Intermediate Products Analysis of Phenol Degradation in Aqueous Solution Caused by Pulsed Discharge

2012 ◽  
Vol 518-523 ◽  
pp. 3146-3149
Author(s):  
Sheng Lan ◽  
Zhen Xing Zhang ◽  
Yong Bin Yuan ◽  
Abdus Samee

Abstract. In this paper we have presented the degradation of Phenol in aqueous solution which is caused by pulse discharge. The reaction products in the wastewater dissolved phenol under pulsed discharge were tested using GC-MS. Based on the experimental results intermediate products include 2,4hydroxyphnel, polyhydroxy phenethyl alcohol and so on. The final products are carbon dioxide and water. In addition, the theoretical analysis has been conducted These results will be helpful for further studying degradation mechanism of wastewater dissolved phenol under pulsed discharge, using either AC or DC voltage.

2004 ◽  
Vol 22 (SI - Chem. Reactions in Foods V) ◽  
pp. S106-S108
Author(s):  
S. T Seifert ◽  
R. Krause ◽  
K. Gloe ◽  
T. Henle

The purpose of our work was to examine the metal binding abilities of selected peptide bound Maillard reaction products (MRPs). The N<sup>α</sup>-hippuryl-protected MRPs N<sup>ε</sup>-fructoselysine and N<sup>ε</sup>-carboxymethyllysine were synthesised and measurement of stability constants for complexes formed with the physiologically important metal ions copper(II) and zinc(II) was carried out in aqueous solution (T = 298.1 K; I = 0.1M KNO<sub>3</sub>) using pH-potentiometry. The stability constants of N<sup>ε</sup>-fructoselysine and N<sup>ε</sup>-carboxymethyllysine with Cu(II) proved that new coordination centres are formed by the nonenzymatic glycation of proteins. With zinc(II) no complexation was observed. Physiological consequences are discussed, but further studies are necessary in order to clarify the effects of this phenomenon.


2015 ◽  
Vol 73 (7) ◽  
pp. 1500-1510 ◽  
Author(s):  
Qing Zheng ◽  
Yong Dai ◽  
Xiangyun Han

In this study, ozonation treatment of C.I. Reactive Black 5 (RB5) was investigated at various operating parameters. The results showed that the aqueous solution initially containing 200 mg/L RB5 was quickly decolorized at pH 8.0 with an ozone dose of 3.2 g/h. Reaction intermediates with m/z 281, 546, 201, 350, 286 and 222 were elucidated using liquid chromatography-mass spectrometry, while sulfate ion, nitrate ion and three carboxylic acids (i.e., oxalic acid, formic acid, and acetic acid) were identified by ion exchange chromatography. Thus, the cleavage of the azo bond and the introduction of OH groups in the corresponding positions were proposed as the predominant reaction pathway. The detachment of sulfonic groups was also commonly observed during the ozonation treatment. The proposed degradation mechanism was confirmed by frontier electron density calculations, suggesting the feasibility of predicting the major events in the whole ozonation process with the computational method. Compared with RB5 degradation, the reduction of total organic carbon (TOC) proceeded much more slowly, and approximately 54% TOC was removed after 4 h of ozonation. Acute toxicity tests with Photobacterium phosphoreum showed that the toxicity of reaction solution was firstly increased and then decreased to a negligible level after 160 min.


1968 ◽  
Vol 21 (7) ◽  
pp. 1727
Author(s):  
RA Fredlein ◽  
I Lauder

The kinetics of the acid-catalysed hydrolysis of a-methylallyl acetate in aqueous solution have been studied over the range 30-100�. Oxygen-18 tracer experiments reveal the mechanism to be solely Aac2 and the Arrhenius parameters are consistent with this conclusion. Crotyl alcohol is observed in the reaction products. The formation of rearranged alcohol is explained by allylic isomerization of the α-methylallyl alcohol produced by the hydrolysis.


2020 ◽  
Vol 8 (9) ◽  
pp. 3000-3009 ◽  
Author(s):  
Chang Feng ◽  
Zhuoyuan Chen ◽  
Jiangping Jing ◽  
Jian Hou

ZnO/Ag/Ag2O accelerates phenol degradation through different intermediate processes under white light illumination.


Sign in / Sign up

Export Citation Format

Share Document