Experiment Study on the Treatment of Arsenic Drinking Water in Integrated Efficient-Whirling Clarifier

2012 ◽  
Vol 518-523 ◽  
pp. 3691-3694 ◽  
Author(s):  
Feng Ping Hu ◽  
Wei Chen ◽  
Xue Mei Chen ◽  
Zhen Gong Tong

In order to investigate arsenic drinking water treatment effect of enhanced coagulation in integrated efficient-whirling clarifier, and explore optimum working condition, the experiment of arsenic removal was carried out for raw water, the arsenic concentration of 0.1mg/L (100µg/L) and the turbidity of 100NTU. In this experiment, the oxidant’s dosage of sodium hypochlorite (NaClO) was 10mg/L and the coagulant’s dosage of ferric chloride (FeCl3) was 15mg/L, when three kinds of reaction time (T) in the first and second flocculation zone were employed, which respectively equal to 5.4 minutes, 2.7 minutes and 1.8 minutes. The results of experiment showed that the concentration of arsenic all drop below 10µg/L, which reached drinking water sanitary standard (GB 5749-2006), and the best working condition for arsenic removal was reaction time equal to 2.7 minutes.

2015 ◽  
Vol 14 (2) ◽  
pp. 236-242
Author(s):  
Emily Peterson ◽  
Howard Shapiro ◽  
Ye Li ◽  
John G. Minnery ◽  
Ray Copes

Community water fluoridation is a WHO recommended strategy to prevent dental carries. One debated concern is that hydrofluorosilicic acid, used to fluoridate water, contains arsenic and poses a health risk. This study was undertaken to determine if fluoridation contributes to arsenic in drinking water, to estimate the amount of additional arsenic associated with fluoridation, and compare this to the National Sanitation Foundation/American National Standards Institute (NSF/ANSI) standard and estimates from other researchers. Using surveillance data from Ontario drinking water systems, mixed effects linear regression was performed to examine the effect of fluoridation status on the difference in arsenic concentration between raw water and treated water samples. On average, drinking water treatment was found to reduce arsenic levels in water in both fluoridated and non-fluoridated systems by 0.2 μg/L. However, fluoridated systems were associated with an additional 0.078 μg/L (95% CI 0.021, 0.136) of arsenic in water when compared to non-fluoridated systems (P = 0.008) while controlling for raw water arsenic concentrations, types of treatment processes, and source water type. Our estimate is consistent with concentrations expected from other research and is less than 10% of the NSF/ANSI standard of 1 μg/L arsenic in water. This study provides further information to inform decision-making regarding community water fluoridation.


2021 ◽  
Vol 9 (01) ◽  
pp. 512-524
Author(s):  
Konan Lopez Kouame ◽  
◽  
Nogbou Emmanuel Assidjo ◽  
Andre Kone Ariban ◽  
◽  
...  

This article presents an optimization of the drinking water treatment process at the SUCRIVOIRE treatment station. The objective is to optimize the coagulation and flocculation process (fundamental process of the treatment of said plant)by determining the optimal dosages of the products injected and then proposes a program for calculating the optimal dose of coagulant in order to automatically determine the optimal dose of the latter according to the raw water quality. This contribution has the advantage of saving the user from any calculations the latter simply enters the characteristics of the raw effluent using the physical interface of the program in order to obtain the optimum corresponding coagulant concentration. For the determination of the optimal coagulant doses, we performed Jar-Test flocculation tests in the laboratory over a period of three months. The results made it possible to set up a polynomial regression model of the optimal dose of alumina sulfate as a function of the raw water parameters. A program for calculating the optimal dose of coagulant was carried out on Visual Basic. The optimal doses of coagulant obtained vary from 25, 35, 40 and 45 mg/l depending on the characteristics of the raw effluent. The model obtained is: . Finally, verification tests were carried out using this model on the process. The results obtained meet the WHO drinkability standards for all parameters for a settling time of two hours.


2019 ◽  
Vol 270 ◽  
pp. 04008
Author(s):  
Margareta Novia Asih Christami ◽  
Setyo Sarwanto Moersidik ◽  
El Khobar M Nazech ◽  
Yenny Silvia

Pesanggrahan River has been contaminated by domestic wastewater. High contamination of Pesanggrahan River with the maximum observed TSS (243,8 mg/L), COD (165,2 mg/L), Total Phosphate (0,74 mg/L), and NH3-N (1,04 mg/L) has exceeded the Raw Water for Drinking Water standard based on Government Regulation Number 82 the Year 2001. Aerated Submerged Sponge-bed Biofilter can be proposed as pre-treatment recommendation for Drinking Water Treatment Plant processing due to its environment-friendly property and ability to reduce the organic pollutant. A lab-scale experiment with the modified volume of 15% media was applied in a 6L reactor with 7 L/min oxygen supply. Retention time variation was evaluated at 1, 1,5, and 2 hours. It was found that the highest removal efficiency occurred at HRT 1,5 hours with the reduction capability of 75,5±0,12% TSS; 59,1±0,14% COD; 57,1±0,27% Total Phosphate; and 45,5±0,37% NH3-N. On the same HRT (1,5 hours), ammonia reduction obtained at k(0-order)= 0,005 g/m2day. This biofilter also decreased the optimum coagulant (PAC) concentration needed.


2002 ◽  
Vol 2 (2) ◽  
pp. 275-280 ◽  
Author(s):  
W. Driehaus

The reduced German drinking water standard for arsenic of 10 μg/L initiated the development of a new adsorbent, the granular ferric hydroxide. It was introduced into the market in 1997 under the trade name GEH®. 16 drinking water treatment plants for arsenic removal are now using this technique in Germany. The article gives a brief overview over this applications, the design data and the treatment results. This technique requires only small contact times between 3 and 10 minutes, whereas the treatment capacities are up to 250,000 bed volumes. The average treatment costs, including media supply, media exchange service and disposal, are 0.04 EURO per m3 treated water.


2017 ◽  
Vol 17 (6) ◽  
pp. 1793-1800
Author(s):  
Y. Yan ◽  
M. Carter ◽  
A. Mercer

Abstract Pilot plant testing is invaluable for ascertaining the robustness of water treatment processes against raw water quality events such as turbidity and colour spikes, whether it be for stress testing of an existing process or designing of a new process. Unfortunately, the natural occurrence of such events (particularly colour) can be difficult to predict and commercial humic materials generally fail to closely match the indigenous natural organic matter (NOM) present in the raw water. Therefore, it is highly desirable to be able to simulate NOM event conditions. This paper describes a simple brewing method that we developed and used in our recent pilot plant evaluation of a proposed DAF/Ozone/BAC process for drinking water treatment. Using this method we successfully prepared, by using fallen leaves etc. collected from the local catchment area, large quantities of a concentrated NOM stock solution with its specific ultraviolet absorbance (SUVA), when diluted, very close to the median SUVA of historical NOM events. The brewed solution showed broadly similar NOM characteristics to those of the raw water encountered during the pilot investigation period in terms of molecular weight distribution and fractionation. The coagulation behaviour was also examined for the spiked and non-spiked raw water.


2014 ◽  
Vol 675-677 ◽  
pp. 951-954 ◽  
Author(s):  
Lei Fang ◽  
Qi Zhu ◽  
Jia Hui Xu

In order to prove the effect of bromate formation by chlorination in drinking water treatment process, by carrying out laboratory chlorination test in simulated water, Harbin drinking water and the Songhua River raw water samples, the influences of bromine ion be oxidated into bromate by chlorine were investigated. The results showed that when chlorine quantity was 5 mg/L, the conversion rate of bromide ion to bromate was less than 1.3%. On a large amount of chlorine (5 mg/L), significant bromate generation changes could not cause by the long-term existence of chlorine in the water, and the bromate concentration did not change significantly for a long period of time. In the conditions of high concentration of organic matter in water, the risk of bromate formation was low. When chlorine content reached 5 mg/L, a very small amount of bromate was detected in the raw water. New excessive risk caused by the presence of residual chlorine would not exist in the process of water supply.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Nusa Idaman Said ◽  
Arie Herlambang

Contamination of rivers has reached an alarming level, especially in the rivers passing through major cities, agricultural areas and industrial areas. Among the contaminants that often appear dominant and very disturbing is the organic substance. The existence of high organic matter within the river water is often expressed in permanganate number that has passed the quality standard. River that contain high organic matter usually the water smell and the color is black, besides it can also cause disturbances in the water treatment process, which is an increasing use of coagulants, chlorine, activated carbon, and the emergence of substances that are not desired, and the quality of treatment results are unsatisfactory. Many ways to reduce the organic matter in river water, one of them is by using the biofilter honeycomb structure. The target of the reduction of organic substances is that the river water could be used as a raw drinking water quality standards or meet the category B, Regulation of Jakarta Governor Number 582, 1995. Raw water used for this study were taken from Krukut River which is the raw water for Regional Water Company PALYJA, Production Installation III Cilandak, South Jakarta and Cengkareng Drain river water, which is currently used as a source of raw water for PAM Taman Kota, West Jakarta using a biofilter reactor aerobic system, the capacity of 50 - 200 m3, Capasity of Blowers 300 l /min, Residence Time 6 hours up to 1 hour. Test results on the residence time of 1 hour, parameters pH, TSS, turbidity, organic substances, detergents, manganese, ammonia, nitrite, nitrate, can meet the standard, except for iron which still exceeds the standard. To improve the removal  efficiency of organic matter and iron, at the beginning of processing before entering into the drinking water treatment unit need to be added powder active carbon and an oxidizing agent with a sufficient dose. Keywords: Organic substances, biofilter, aerobic, honeycomb plastic media.


Sign in / Sign up

Export Citation Format

Share Document