Preparation and Characterization of Sandwich Structure Purification Material via Gas-Jet/Electrospinning Technique

2012 ◽  
Vol 531 ◽  
pp. 14-18
Author(s):  
Tai Qi Liu ◽  
Bin Bin Cao ◽  
Xiao Long Zhao ◽  
Chen Wang ◽  
Ruo Fan Zhang ◽  
...  

Nano-TiO2 is a high efficient and no poisonous light induced catalyst. It is important how to immobilize it on some supporter for its application. In this paper, The Nylon-6 (PA-6) nanofibres bearing TiO2 nano-particles were prepared via gas-jet/electrospinning technique. The resulted materials were characterized by XRD, SEM, TEM, EDX and TG techniques, and antibacterial activities of the resulted fibers were tested by Shake Flask method. The results show that fibers bearing nano-TiO2, in an average diameter from 60 to 65nm were prepared, and the antibacterial efficiency of these gas-jet/electrospun nanofibers can reach 99.74%. The titled fibers can be loaded in a sandwich structure nanofiber super-cleaning material by hot-press process, and its filtration efficiency can reach 99.50% with 1µm polystyrene microspheres as the filter media.

2009 ◽  
Vol 79-82 ◽  
pp. 667-670 ◽  
Author(s):  
Su Xia ◽  
Zheng Wang ◽  
Jing Quan Yang ◽  
Li Mei Hao ◽  
Jin Hui Wu

A novel antibacterial material was prepared by electrospining polyurethane (PU) containing TiO2-Ag nanoparticles in this study. The average diameter of PU electrospun nanofibers decreased with increasing concentration of TiO2-Ag.These nanofibers membrane showed high antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The mixed mode of PU electrospun fibers and TiO2-Ag nanoparticles was a physical form. The addition of TiO2-Ag did not affect the mechanical property of the mat much.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Phontip Tammawat ◽  
Nonglak Meethong

An electrospinning technique was used to fabricate TiO2nanofibers for use as binder-free electrodes for lithium-ion batteries. The as-electrospun nanofibers were calcined at 400–1,000°C and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM and TEM images showed that the fibers have an average diameter of ~100 nm and are composed of nanocrystallites and grains, which grow in size as the calcination temperature increases. The electrochemical properties of the nanofibers were evaluated using galvanostatic cycling and electrochemical impedance spectroscopy. The TiO2nanofibers calcined at 400°C showed higher electronic conductivity, higher discharge capacity, and better cycling performance than the nanofibers calcined at 600, 800, and 1,000°C. The TiO2nanofibers calcined at 400°C delivered an initial reversible capacity of 325 mAh·g−1approaching their theoretical value at 0.1 C rate and over 175 mAh·g−1at 0.3 C rate with limited capacity fading and Coulombic efficiency between 96 and 100%.


2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Azizul Mohd Zahari ◽  
Abdull Rahim Mohd Yusoff ◽  
Nor Aziah Buang ◽  
Palanivel Satishkumar ◽  
M Jasmin Fathi Jasni ◽  
...  

This research is about the investigation of the pure water flux property of composite polyvinylidene fluoride (PVDF) nanofibers. Electrospinning technique was used to prepare the composite electrospun nanofibers. PVDF was dissolved in N,N-dimethylformamide (DMF) solvent and blended together with activated carbon (AC) and polyvinylpyrrolidone (PVP). The nanofibers were characterized to determine the morphologies, wettability property, and its tensile strength. The fabricated nanofibers diameter was found in the range between 20 to 180 nm. The presence of AC deteriorates the mechanical properties of the nanofibers as the size of AC is larger than the external diameter of the nanofibers. The results of contact angle confirmed that the fabricated nanofiber exhibit less hydrophobic in the presence of PVP and AC. The less hydrophobic nature of proposed nanofiber might be useful for the water treatment process.


DYNA ◽  
2019 ◽  
Vol 86 (209) ◽  
pp. 64-72
Author(s):  
Edwin Edgardo Espinel Blanco ◽  
Nelson Escobar-Mora ◽  
Lina Marcela Hoyos-Palacio ◽  
Martin Fabián Sarmiento-Gaviria

A non-woven nanofiber or polymeric cover is synthesized with nylon-6 as the base polymeric material. Different acid relationships (formic/acetic) were tested in the electrospinning equipment, until defining by macroscopic observations and SEM Scanning Electron Microscopy analysis the adequate acid ratio 3:2 and the average diameter of the nanofibers in 350nm, defining the parameters to operate the electrospinning. According to ASTM D 882 standard, the Tensile Strength was calculated for stresses applied horizontally and vertically to the direction of the nanofibers. With the standards ASTM D 7490 and ASTM G-15 the wettability was determined by measuring the contact angle, finding that it has hydrophilic properties with high wettability, adhesiveness and surface energy. Nanostructured polymer covers can be used for biological isolation in health care areas, as a protective barrier to control the spread of infections. 


2007 ◽  
Vol 342-343 ◽  
pp. 225-228 ◽  
Author(s):  
Young Gwang Ko ◽  
Kwan Han Yoon ◽  
Chung Park ◽  
Moon Hee Sung ◽  
Oh Kyoung Kwon ◽  
...  

Poly(γ-glutamic acid)(γ-PGA) based nanofiber sheets were prepared by using electrospinning technique to evaluate the ability of the prevention of postoperative tissue adhesion. The anti-adhesion membranes were prepared from poly(γ-glutamic acid) and PLGA with different compositions by electrospinning. Also nonsteroidal anti-inflammatory drug (ibuprofen) was incorporated during fabrication of nanofibers. Various electrospun nanofibers were characterized by the measurements of microstructure (surface morphology and fiber diameter by SEM), ATR-FTIR, water contact angle and in vivo animal study using Sprague Dawley rat model. The average diameter of nanofibers electrospun from trifluoroacetic acid (TFA) solution ranged from 300 nm to 900 nm, approximately. From in vivo animal study, it was observed that ibuprofen-incorporated γ- PGA nanofiber sheet was significantly effective in preventing tissue adhesion and inducing wound healing, probably due to the appropriate hydrophilicity of γ-PGA preventing shrinkage of the sheet and appropriate barrier property, while PLGA nanofibrous mat was dramatically contracted in in vivo due to its high hydrophobicity resulted in insufficient coverage of wound.


2019 ◽  
Vol 3 (2) ◽  
pp. 130-138
Author(s):  
Reza Haddad ◽  
Mehdi Dusti Telgerd ◽  
Hojjatalla Hadi ◽  
Mohammad Sadeghinia

Background: Polyacrylonitrile/Mo132 composite nanofibers mats was synthesized by an electrospinning technique using PAN and giant ball nano-polyoxomolybdateMo132. The nanocluster Mo132 was mixed with PAN solution and then electrospun to produce bead-free nanofibers. The aim of this study is to evaluate the adsorption ability of electrospun composite nanofibers against sulfur mustard stimulants and assess the possibility of using the electrospun nanofibers as protective membranes in chemical masks and warfare clothing. Adsorption of sulfur mustard stimulants was investigated on the surface of PAN nanofibers embedded with keplerate nano-polyoxomolybdate. Methods: In order to study the 2-CEES adsorption ability, the prepared PAN/Mo132 nanofibers composite was further prepared and exposed to 2-CEES solution. The surface morphology and other properties of the PAN/Mo132 nanofibers composite were characterized by various techniques, including SEM, TEM, FT-IR, UV-Vis. SEM images which showed that the average diameter of the fibers was found to be between 100-120 nm. Results: The adsorption efficiency of PAN/Mo132 composite in adsorption of 2-CEES was obtained 89% after 7h at room temperature. The results showed that composite nanofibers PAN/Mo132 will have a good ability as protective clothing and chemical masks against chemical warfare agents. Conclusion: PAN/Mo132 nanofibers were prepared by electrospinning method. The leaching of Mo132 from the nanofibers was not observed, meaning that the catalyst had excellent stability and could be used as a heterogeneous structure against the adsorption of sulfur mustard stimulant at room temperature. This composite nanofibers membrane exhibited good performance to adsorb 2-CEES in comparison with pure PAN. The adsorption rate of 2-CEES increases with increasing the amount of Mo132 embedded in the PAN nanofibers.


2013 ◽  
Vol 634-638 ◽  
pp. 2131-2134
Author(s):  
Yang Liu ◽  
Zhi Min Yang

In this paper, a research approaching on nano-TiO2 particles modified fabric functional enhancement is reported. The morphologies of the nano particles existing onSubscript text the fabric surface were examined by scanning electron microscopy (SEM), which showed that the particle size is less than 100nm and almost no coacervation, and then water-repellent and oil-repellent performance of the modified fabric was measured by the contact angle method, and found they had the most desired water and oil release behaviors. In addition, the modified fabric showed excellent antibacterial effects according to FZ/T73023-2006 antibacterial standard, and the antibacterial efficiency was above 95%. Meanwhile, good durability of functional fabrics also observed which could endure 20 times washing at least.


2013 ◽  
Vol 651 ◽  
pp. 87-90 ◽  
Author(s):  
Xiu Lian Wang ◽  
Liu Xue Zhang

In this study, composite nanofibers of polyaniline doped with dodecylbenzene sulfonic acid (PANI-DBSA) and polyurethane (PU) were prepared via an electrospinning process. The morphology, diameter, and structure of the electrospun nanofibers were investigated. SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of the blend. The average diameter of the nanofibers was 370–1620 nm. The diameter gradually decreased with increasing PANI-DBSA content in the blend, and more beads were obtained in the composite.


2007 ◽  
Vol 1006 ◽  
Author(s):  
Saima Khan ◽  
Aurangzeb Khan ◽  
Martin E. Kordesch

AbstractSilicon Carbide (SiC) nanofibers were synthesized from SiC powder dispersed in polyethylene oxide (PEO) solution in Chloroform using the electrospinning technique. The as-spun fibers were then annealed at 1000ËC to 7 hours. The average diameter of the annealed fibers is 500 nm while the length of the annealed fibers is about 50 µm. The fibers were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) and Cathodoluminescence (CL). PL spectra from the annealed SiC fibers show a broad emission in the red-infrared spectral regime. The main peak is centered at 774 nm while the shoulder on the left is at 740 nm


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1135
Author(s):  
Oskar Álvarez-Ortega ◽  
Luis Roberto Ruiz-Ramírez ◽  
Jesús Alberto Garibay-Alvarado ◽  
Alejandro Donohue-Cornejo ◽  
León Francisco Espinosa-Cristóbal ◽  
...  

Currently, nanotechnology is perceived as a promising science that produces materials with diverse unique properties at a nanometric scale. Biocompatibility tests of poly-ε-caprolactone nanofibers, embedded with silver nanoparticles manufactured by means of the electrospinning technique, were carried out in Wistar rats to be used as oral dressings for the eradication of bacteria. Solutions of 12.5, 25, 50 and 100 mM of silver nitrate were made using N-dimethylformamide (DMF) and tetrahydrofuran (THF) as reducing solvents with 8% of poly-ε-caprolactone (PCL) polymer. The solutions were electrospun, and the nanofibers obtained in the process were characterized by infrared spectroscopy, Raman spectroscopy, dark field optical microscopy, scanning electron microscopy and X-ray scattering spectroscopy. The nanofibers had an average diameter of 400 ± 100 nm. Once the characterization of the material was done, three implants of each concentration of the nanofibers were formed and placed in the subcutaneous tissue of the rats. Three experimental subjects were used, leaving the material in them for a length of two, four and six weeks, respectively. The rats showed good healing, with the lesions completely healed at four weeks after implantation. After that time, biopsies were taken, and histopathological sections were made to evaluate the inflammatory infiltrate. The tissues of the rats presented chronic inflammatory infiltrate composed mainly of lymphocytes and giant multinucleated cells. The material was rejected by the rats when a layer of collagen and fibroblasts was produced, coating the material, a process characteristic of a foreign body reaction.


Sign in / Sign up

Export Citation Format

Share Document