Thermoelectric Properties of Zn-Sb Thin Films Grown by Ion Beam Sputtering

2012 ◽  
Vol 538-541 ◽  
pp. 154-157
Author(s):  
Peng Juan Liu ◽  
Ping Fan ◽  
Zhuang Hao Zheng ◽  
Dong Ping Zhang ◽  
Xing Min Cai ◽  
...  

Antimony (Sb) and zinc (Zn) bilayer was sputter-deposited at room temperature with various Zn contents by ion-beam sputtering and transformed into Antimony zinc after post thermal annealed at 573K for 60 min. A power factor of 6.18×10-4 W/mK2 at 473 K has been obtained when the sputtering time of the Zn was 20 minutes. The maximum Seebeck coefficient is 42.0 μVK-1. Composition analysis shows that the compound of SbZn is achieved and the small Seebeck coefficient is due to the deviation of stoichiometric.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Chi-Pi Lin

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.


2014 ◽  
Vol 562 ◽  
pp. 181-184 ◽  
Author(s):  
Zhuang-hao Zheng ◽  
Ping Fan ◽  
Jing-ting Luo ◽  
Xing-min Cai ◽  
Guang-xing Liang ◽  
...  

2012 ◽  
Vol 465 ◽  
pp. 72-75
Author(s):  
Xiao Long Jiang ◽  
Y.J. Yao ◽  
M. Lai ◽  
K. Peng ◽  
Y.W. Du

A series of nanocrystalline FeNbB films were fabricated using ion-beam sputtering technique from FeNbB target. Pieces of these films were annealed for 1 hour at various temperatures up to 5730C. Room temperature soft magnetic properties of these films were measured. The influence of microstructure on magnetic behavior in nanocrystalline FeNbB films is investigated in a series of specimens with different film’s thickness. For the sample 120nm and 5000C annealed, cutoff frequency was found to be 5E7 Hz, which has the μf0=5E10.


2010 ◽  
Vol 121-122 ◽  
pp. 52-57
Author(s):  
Shih Wei Mao ◽  
Jung Hsiung Shen ◽  
Der Shin Gan ◽  
Hsing Lu Huang ◽  
Sung Wei Yeh

Temperature dependent oriented growth of ZnO thin film deposited on NaCl (001) substrates using ion beam sputtering was studied by transmission electron microscopy (TEM). Thin films showing a texture due to parallel epitaxy with NaCl (001) as deposited at 100 oC, whereas thin films deposited at 400 oC can form a texture. The microstructure and the epitaxial relationship with the NaCl (001) plane were studied by a high-resolution TEM. The possible causes for the orientation changed with temperature are discussed. The optical transparency of the nanofilms grown from room temperature to 400 oC was measured.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5529
Author(s):  
Joachim Sonntag ◽  
Bertrand Lenoir

From the theory of two-phase composites it is concluded that in the concentration dependence of the Seebeck coefficient S a kink can occur precisely at S=0 absolute if the two phases have different kinds of carriers, electrons and holes, and if the phase grains are spherical without preferred orientations and arranged in a symmetrical fashion. This feature, indeed found to be realized in amorphous Cr1−xSix thin films deposited by ion beam sputtering from Cr-Si alloy targets, can be applied to make reference standards for S=0 at room temperature and even at higher temperatures. Additionally, it may be used to design a thermopower switch between S=0 and S≠0. It is also concluded that the structure realized in any alloy during solidification does not only depend on the diffusion mobility of the atoms and on the existence of a (relative) minimum in the Gibbs’ free energy. It depends also on the fact whether this structure is compatible with the demand that (spatial) continuity of the entropy and energy flux densities and their gradients is saved during the solidification process.


Sign in / Sign up

Export Citation Format

Share Document