Effect of Heat Input on Toughness of Coarse-Grained Heat-Affected Zone of an Ultra Low Carbon Acicular Ferrite Steel

2012 ◽  
Vol 538-541 ◽  
pp. 2003-2008 ◽  
Author(s):  
Zheng Hai Xia ◽  
Xiang Liang Wan ◽  
Xue Li Tao ◽  
Kai Ming Wu

The effect of heat input on toughness of coarse-grained heat-affected zone of an ultra low carbon acicular ferrite steel were investigated when the welding was conducted with high heat input. Microstructural observations, energy dispersive X-ray spectroscopy analyses were conducted using optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The microstructures of coarse-grained heat-affected zone consist of predominantly bainitic microstructure and a small proportion of acicular ferrite grains. The bainitic microstructures become coarsened with increasing heat input. The impact toughness of coarse-grained heat-affected zone remained at a higher level when the heat input ranged from 42 to 55 kJ/cm. It became not stable and dropped to a lower level when the heat input increased to 110150 kJ/cm. The enhancement in impact toughness was attributable to the MnS precipitation on the pre-formed Ti oxides as well as the formation of intragranular ferrite. When specimens were welded with higher heat input, the deterioration of impact toughness was caused by the coarsening of austenite grains.

2018 ◽  
Vol 937 ◽  
pp. 61-67
Author(s):  
Yu Jie Li ◽  
Jin Wei Lei ◽  
Xuan Wei Lei ◽  
Oleksandr Hress ◽  
Kai Ming Wu

Utilizing submerged arc welding under heat input 50 kJ/cm on 60 mm thick marine engineering structure plate F550, the effect of preheating and post welding heat treatment on the microstructure and impact toughness of coarse-grained heat-affected zone (CGHAZ) has been investigated. The original microstructure of the steel plate is tempered martensite. The yield and tensile strength is 610 and 660 MPa, respectively. The impact absorbed energy at low temperature (-60 °C) at transverse direction reaches about 230~270 J. Welding results show that the preheating at 100 °C did not have obvious influence on the microstructure and toughness; whereas the tempering at 600 °C for 2.5 h after welding could significantly reduce the amount of M-A components in the coarse-grained heat-affected zone and thus improved the low temperature impact toughness.


2012 ◽  
Vol 538-541 ◽  
pp. 2026-2031 ◽  
Author(s):  
Zhou Gao ◽  
Ran Wei ◽  
Kai Ming Wu

The effect of varying heat inputs (20, 100, 200 kJ/cm) on the microstructures and toughness of the simulated coarse-grained heat-affected zone of a Nb-Ti microalloyed pipeline steel were investigated utilizing optical and electron microscope. Results showed that the impact toughness of the coarse-grained heat-affected zone maintained a higher level at the heat input of 20 and 100 kJ/cm, whereas it dropped to a much lower level at the heat input of 200 kJ/cm. The good toughness was attributed to the grain refinement and the homogenous distribution of fine and elongated martensite/austenite constituents. The deterioration of toughness for high heat input simulated welding was mainly caused by the coarse bainitic microstructure and massive martensite/austenite constituents.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1863
Author(s):  
Leping Wang ◽  
Huibing Fan ◽  
Genhao Shi ◽  
Qiuming Wang ◽  
Qingfeng Wang ◽  
...  

For investigating the impact of ferritic morphology on yield strength (YS) of the high-heat-input welding induced coarse-grained heat-affected zone (CGHAZ) of a low carbon Mo-V-N-Ti-B steel, a group of particular welding heat inputs were designed to obtain different ferritic microstructures in CGHAZ. The tensile properties were estimated from typical samples with ferritic microstructures. The mixed microstructures dominated by the intragranular polygonal ferrite (IGPF), the intragranular acicular ferrite (IGAF), and the granular bainite (GB) were obtained at the heat inputs of 35, 65, 85 and 120 kJ/cm, respectively. When the main microstructure changed from IGPF to IGAF and GB, YS increased first and then decreased. The microstructure consisting mainly of IGAF possessed the maximum YS. As the main microstructure changed from IGPF to IGAF and GB, the contribution of grain refinement strengthening to YS was estimated to be elevated remarkably. This means the strength of CGHAZ in a low-carbon steel subjected to the high-heat-input welding could be enhanced by promoting the fine-grained AF and GB formation.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1997
Author(s):  
Mingliang Qiao ◽  
Huibing Fan ◽  
Genhao Shi ◽  
Leping Wang ◽  
Qiuming Wang ◽  
...  

Welding thermal cycles with heat inputs ranging from 25 to 75 kJ/cm were performed on a Gleeble 3500. The impact energy improved significantly (from 10 to 112 J), whereas the simulated coarse-grain heat-affected zone (CGHAZ) microstructure changed from lath bainite ferrite (LBF) and granular bainite ferrite (GBF) + martensite/austenite (M/A) to acicular ferrite (AF) + polygonal ferrite (PF) + M/A as the heat input increased. Simultaneously, the mean coarse precipitate sizes and the degree of V(C,N) enrichment on the precipitate surface increased, which provided favorable conditions for intragranular ferrite nucleation. The Ar3 of CGHAZ increased from 593 °C to 793 °C with increasing heat inputs; the longer high-temperature residence time inhibited the bainite transformation and promoted the ferrite transformation. As a result, acicular ferrite increased and bainite decreased in the CGHAZ. The CGHAZ microstructure was refined for the acicular ferrite segmentation of the prior austenite, and the microstructure mean equivalent diameter (MED) in the CGHAZ decreased from 7.6 µm to 4.2 µm; the densities of grain boundaries higher than 15° increased from 20.3% to 45.5% and significantly increased the impact toughness. The correlation of heat input, microstructure, and impact toughness was investigated in detail. These results may provide new ideas for the development of high welding heat input multiphase steels.


2018 ◽  
Vol 913 ◽  
pp. 317-323 ◽  
Author(s):  
Yun Zong ◽  
Chun Ming Liu

Investigations on the microstructure and properties of the Coarse-Grained Heat-Affected Zone (CGHAZ) and intercritical reheated Coarse-Grained Heat-Affected Zone (ICCGHAZ) of a low-carbon bainite E550 steel were carried out using thermal simulation technology in this paper.Double-pass welding thermal cycle were performed on Gleeble-3800 thermal simulator, tempering heat treatment of the critical coarse crystal zone carried out in a box resistance furnace, low impact energies at -40 °C and Vickers hardness determined, and the microstructure were observed. The experimental results show that the microstructure of CGHAZ (Tp1 is 1320 °C) was dominated by coarse granular bainite and Lath bainite Ferrite, the impact toughness of CGHAZ was poor. The toughness of the CGHAZ was improved after second welding heat cycle except intercritical two-phase heating. When the peak temperature of the second thermal cycle(Tp2) was 650 °C, martensite-austenite (M-A) constituent of original CGHAZ wasdecomposed and refined, impact toughness and hardness were all higher than that of CGHAZ; When Tp2 is 750 °C, there was a ” necklace” distribution of massive M-A constituent in this ICCGHAZ, the impact energy at -40 °C prominently decreased and Hardness went up; When Tp2 was in the temperature range of 850 °C ~1100 °C, the microstructure was mainly finer granular bainite, the toughness of CGHAZ could be effectively improved; When Tp2 was over 1100 °C, M-A constituents become coarse, the toughness declined slightly . The changing of hardness was the opposite of toughness but the hardness fluctuation was comparatively small. After tempering at different temperature (520 °C~640 °C) , the grain boundary "necklace" structure of ICCGHAZ was still obvious, some of the M-A constituent were decomposed, the hardness decreased, the lowest hardness was obtained in 610 °C.


2018 ◽  
Vol 115 (4) ◽  
pp. 410
Author(s):  
Fengyu Song ◽  
Yanmei Li ◽  
Ping Wang ◽  
Fuxian Zhu

Three weld metals with different oxygen contents were developed. The influence of oxygen contents on the microstructure and impact toughness of weld metal was investigated through high heat input welding tests. The results showed that a large number of fine inclusions were formed and distributed randomly in the weld metal with oxygen content of 500 ppm under the heat input condition of 341 kJ/cm. Substantial cross interlocked acicular ferritic grains were induced to generate in the vicinity of the inclusions, primarily leading to the high impact toughness at low temperature for the weld metal. With the increase of oxygen content, the number of fine inclusions distributed in the weld metal increased and the grain size of intragranular acicular ferrites decreased, which enhanced the impact toughness of the weld metal. Nevertheless, a further increase of oxygen content would contribute to a great diminution of the austenitic grain size. Following that the fraction of grain boundary and the start temperature of transformation increased, which facilitated the abundant formation of pro-eutectoid ferrites and resulted in a deteriorative impact toughness of the weld metal.


2019 ◽  
Vol 38 (2019) ◽  
pp. 362-369 ◽  
Author(s):  
Ming-ming Song ◽  
Yu-min Xie ◽  
Bo Song ◽  
Zheng-liang Xue ◽  
Nan Nie ◽  
...  

AbstractThe microstructures and impact properties of the heat affected zone (HAZ) in steel treated by rare earth (RE) under different welding processes were discussed. The effect of Al on the impact properties of the HAZ in RE treated steel was analyzed. It finds that when the welding t8/5 is smaller than 111 s, the main microstructure in steels is bainite/widmanstatten. The impact toughness of the HAZ is lower than that of the steel matrix. When t8/5 is more than 250 s, the microstructure is mainly acicular ferrite (AF) in the steel treated by RE, and the impact toughness of HAZ is obviously improved. Even under the welding processing with t8/5 about 600 s in RE treated steel can still obtain a lot of AF. While in the steel killed by Al and treated by RE, the main microstructure is parallel cluster of bainite/widmanstatten, and the impact toughness of HAZ is significantly lower than that of low-Al RE treated steel. Al can deteriorate the optimizing of RE treatment on HAZ.


2021 ◽  
Vol 1016 ◽  
pp. 42-49
Author(s):  
Kook Soo Bang ◽  
Joo Hyeon Cha ◽  
Kyu Tae Han ◽  
Hong Chul Jeong

The present work investigated the effects of Al, Si, and N content on the impact toughness of the coarse-grained heat-affected zone (CGHAZ) of Ti-containing low-carbon steel. Simulated CGHAZ of differing Al, Si, and N contents were prepared, and Charpy impact toughness was determined. The results were interpreted in terms of microstructure, especially martensite-austenite (M-A) constituent. All elements accelerated ferrite transformation in CGHAZ but at the same time increased the amount of M-A constituent, thereby deteriorating CGHAZ toughness. It is believed that Al, Si, and free N that is uncombined with Ti retard the decomposition of austenite into pearlite and increase the carbon content in the last transforming austenite, thus increasing the amount of M-A constituent. Regardless of the amount of ferrite in CGHAZ, its toughness decreased linearly with an increase of M-A constituent in this experiment, indicating that HAZ toughness is predominantly affected by the presence of M-A constituent. When a comparison of the effectiveness is made between Al and Si, it showed that a decrease in Si content is more effective in reducing M-A constituents.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


Sign in / Sign up

Export Citation Format

Share Document