Research on Energy Consumption for Improving Light Vehicle Manufacturing Technology of Automotive Industry in China

2012 ◽  
Vol 538-541 ◽  
pp. 2864-2867
Author(s):  
Fang Ma ◽  
Li Hua Chen ◽  
Yi Ping Luo

It has become the theme of the times to save energy and protect environment, since the environment has been deteriorating and energy crisis has been increasingly nervous. The trend is the development of automotive lightweight direction, because of the close relationship among energy consumption and vehicle manufacturing and using cost. In this article, the automotive industry to use the material is still main traditional material of iron and steel high-energy through a statistical analysis of the automotive industry energy consumption. Furthermore, the method was described that the use of lightweight environmentally friendly materials to promote lightweight manufacturing technology in the automotive industry based on the statistical analysis of the automotive industry energy consumption. A new era is coming with automotive materials development. The research and application of lightweight materials on new car will become the focus of future vehicle development.

Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 33 ◽  
Author(s):  
Yongming Zhang ◽  
Zhe Yan ◽  
Feng Yuan ◽  
Jiawei Yao ◽  
Bao Ding

Elevators were reported to cause an important part of building energy consumption. In general, each elevator has two operation states: The load state and power regeneration state. During operation, it has the potential to save energy by using regeneration power efficiently. In existing research, a set of energy storage devices are installed for every elevator, which is highly costly. In this paper, an energy conservation approach for elevators based on a direct current (DC) micro-grid is proposed, which has better economy. Then, an innovative energy-efficient device for the elevator group is designed based on a supercapacitor with similar characteristics and lifetimes. In a high-rise building case study, the experimental test and field data collection show that the innovative approach could result in a high energy efficiency within 15.87–23.1% and 24.1–54.5%, respectively. It is expected that the proposed method and designed device could be employed practically, saving energy consumption for elevator reconstruction.


2014 ◽  
Vol 522-524 ◽  
pp. 845-848
Author(s):  
Ji Gao Li ◽  
Qian Zhang

According the high energy consumption and pollution in foundry industry, the reason of high energy consumption and the source of the pollution were analyzed. Based on the analysis, for the sustainable development of foundry industry, some effective measures were suggested: defining the responsibility of all referred parties (governor and enterpriser); trying to save energy and protect environment from the source; reusing the waste scientifically.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hai T. Do ◽  
Linh H. Truong ◽  
Minh T. Nguyen ◽  
Chen-Fu Chien ◽  
Hoang T. Tran ◽  
...  

Recently, unmanned aerial vehicles (UAVs) enhance connectivity and accessibility for civilian and military applications. A group of UAVs with on-board cameras usually monitors or collects information about designated areas. The UAVs can build a distributed network to share/exchange and to process collected sensing data before sending to a data processing center. A huge data transmission among them may cause latency and high-energy consumption. This paper deploys artificial intelligent (AI) techniques to process the video data streaming among the UAVs. Thus, each distributed UAV only needs to send a certain required information to each other. Each UAV processes data utilizing AI and only sends the data that matters to the others. The UAVs, formed as a connected network, communicate within a short communication range and share their own data to each other. Convolution neural network (CNN) technique extracts feature from images automatically that the UAVs only send the moving objects instead of the whole frames. This significantly reduces redundant information for either each UAV or the whole network and saves a huge energy consumption for the network. The UAVs can also save energy for their motion in the sensing field. In addition, a flocking control algorithm is deployed to lead the group of UAVs in the working fields and to avoid obstacles if needed. Simulation and experimental results are provided to verify the proposed algorithms in either AI-based data processing or controlling the UAVs. The results show promising points to save energy for the networks.


Author(s):  
Hassan El Alami ◽  
Abdellah Najid

The data communication task, in wireless sensor networks (WSNs), is a major issue of high energy consumption. A hierarchical design based on a clustering algorithm is one of the approaches to manage the data communication and save energy in WSNs. However, most of the previous approaches based on clustering algorithms have not considered the length of the data communication path, which is a direct relation to energy consumption in WSNs. In this article, a novel scheme of a clustering algorithm has been proposed for reducing the data communication distance in WSNs. Hierarchical routing protocols were implemented for homogeneous and heterogeneous networks. The results show that the proposed scheme is more efficient than other protocols.


2013 ◽  
Vol 446-447 ◽  
pp. 1353-1357
Author(s):  
Zhe Qiao ◽  
Jin Zhou Liu ◽  
Jing Song Wang ◽  
Qing Guo Xue

In this paper, we find that factors which affect energy consumption are steel ratio coefficient and process energy consumption by analyzing energy consumption of every process in integrated steel works. On this basis we point out the main reason for the high energy consumption of iron and steel industry in China is that integrated steel works examine the production process without system energy saving ideas. Therefore we propose the countermeasures of energy saving in iron and steel industry in China in aspects of energy management and control center, iron-making system, steel-making system, steel rolling system, as well as secondary energy recovery, which is aimed at providing a way for energy saving and emissions reduction of iron and steel industry in China.


2018 ◽  
Vol 11 (1) ◽  
pp. 99 ◽  
Author(s):  
Wei Sun ◽  
Yufei Hou ◽  
Lanjiang Guo

In the context of new industrialization, the energy problem being experienced by the manufacturing industry has aroused social concerns. This paper focuses on the energy use of 27 subindustries in China’s manufacturing industry and it develops an energy consumption index for 1994–2015. Subsequently, the method of grey relational analysis is used, with the full period divided according to years in which change points occur. The empirical analysis indicates that the energy consumption indexes generally exhibit a declining trend. Using the grey model (GM (1,1)) to forecast the index indicates a continued downward trend up to 2025 for energy-intensive industries, which is a more optimistic scenario than the trend forecast for the whole manufacturing sector. Thus, these energy-intensive industries do not drag down the performance of the whole manufacturing industry in regard to energy intensity. In future, more attention should be paid to energy-saving efforts by nontraditional high-energy-consuming industries. Although the results show that energy efficiency is improving in China, total annual consumption is rising rapidly. Therefore, the industry needs to continue to strengthen independent innovation and improve the efficiency of new energy use. The Chinese government should formulate feasible long-term plans to encourage enterprises to save energy.


2020 ◽  
pp. 735-752
Author(s):  
Hassan El Alami ◽  
Abdellah Najid

The data communication task, in wireless sensor networks (WSNs), is a major issue of high energy consumption. A hierarchical design based on a clustering algorithm is one of the approaches to manage the data communication and save energy in WSNs. However, most of the previous approaches based on clustering algorithms have not considered the length of the data communication path, which is a direct relation to energy consumption in WSNs. In this article, a novel scheme of a clustering algorithm has been proposed for reducing the data communication distance in WSNs. Hierarchical routing protocols were implemented for homogeneous and heterogeneous networks. The results show that the proposed scheme is more efficient than other protocols.


Author(s):  
Yixin Zhang ◽  
Xumei Chen ◽  
Lei Yu

In recent years, a series of traffic problems have emerged with continuously increasing traffic. Connected and autonomous vehicles (CAV) technology is considered to be an effective way to relieve these problems. It is believed that buses, trucks, and other special vehicles could be among of the first application areas to promote the development of CAV technology. Because of their features of high emissions of pollutants and high energy consumption, the improvement of environmental benefits for such heavy vehicles as buses is the focus in this research. Therefore, this paper aims to evaluate the impact of automated buses on emissions and energy consumption on urban expressways. To achieve the research objectives in this paper, the established automated buses model is embedded into the simulation platform with VISSIM dynamic link library. Models are developed for emissions and energy consumption calculations based on vehicle-specific power to quantify the environmental impact of automated buses. Two improvement strategies: dedicated managed lane and dedicated bus lane, are designed. Finally, a VISSIM simulation platform based on the Fourth Ring Road in Beijing (Xueyuan Bridge to Haidian Bridge) is built to conduct case studies. The results show that CAV technology in buses can reduce exhaust emissions and save energy. Moreover, the managed lane strategy brings a significant reduction in the emissions and energy consumption of automated buses. These findings can be used for the development of automated bus operational strategies focused on environmental benefits.


Sign in / Sign up

Export Citation Format

Share Document