scholarly journals Analyzing and Forecasting Energy Consumption in China’s Manufacturing Industry and Its Subindustries

2018 ◽  
Vol 11 (1) ◽  
pp. 99 ◽  
Author(s):  
Wei Sun ◽  
Yufei Hou ◽  
Lanjiang Guo

In the context of new industrialization, the energy problem being experienced by the manufacturing industry has aroused social concerns. This paper focuses on the energy use of 27 subindustries in China’s manufacturing industry and it develops an energy consumption index for 1994–2015. Subsequently, the method of grey relational analysis is used, with the full period divided according to years in which change points occur. The empirical analysis indicates that the energy consumption indexes generally exhibit a declining trend. Using the grey model (GM (1,1)) to forecast the index indicates a continued downward trend up to 2025 for energy-intensive industries, which is a more optimistic scenario than the trend forecast for the whole manufacturing sector. Thus, these energy-intensive industries do not drag down the performance of the whole manufacturing industry in regard to energy intensity. In future, more attention should be paid to energy-saving efforts by nontraditional high-energy-consuming industries. Although the results show that energy efficiency is improving in China, total annual consumption is rising rapidly. Therefore, the industry needs to continue to strengthen independent innovation and improve the efficiency of new energy use. The Chinese government should formulate feasible long-term plans to encourage enterprises to save energy.

2021 ◽  
Vol 13 (4) ◽  
pp. 1600
Author(s):  
Weijiang Liu ◽  
Mingze Du ◽  
Yuxin Bai

As the world’s largest developing country, and as the home to many of the world’s factories, China plays a crucial role in the sustainable development of the world economy regarding environmental protection, energy conservation, and emission reduction issues. Based on the data from 2003–2015, this paper examined the green total factor productivity and the technological progress in the Chinese manufacturing industry. A slack-based measure (SBM) Malmquist productivity index was used to measure the bias of technological change (BTC), input-biased technological change (IBTC), and output-biased technological change (OBTC) by decomposing the technological progress. It also investigated the mechanism of environmental regulation, property right structure, enterprise-scale, energy consumption structure, and other factors on China’s technological progress bias. The empirical results showed the following: (1) there was a bias of technological progress in the Chinese manufacturing industry during the research period; (2) although China’s manufacturing industry’s output tended to become greener, it was still characterized by a preference for overall CO2 output; and (3) the impact of environmental regulations on the Chinese manufacturing industry’s technological progress had a significant threshold effect. The flexible control of environmental regulatory strength will benefit the Chinese manufacturing industry’s technological development. (4) R&D investment, export delivery value, and structure of energy consumption significantly contributed to promoting technological progress. This study provides further insight into the sustainable development of China’s manufacturing sector to promote green-biased technological progress and to achieve the dual goal of environmental protection and healthy economic growth.


2021 ◽  
Vol 13 (11) ◽  
pp. 6192
Author(s):  
Junghwan Lee ◽  
Jinsoo Kim

This study analyzes the changes in energy consumption of the Korean manufacturing sector using the index decomposition analysis (IDA) method. To capture the production effect based on actual physical activities, we applied the activity revaluation (AR) approach in the analysis. We also developed energy consumption data in terms of primary energy supply to consider conversion loss in the energy sector to avoid any distortions in the intensity effect. The analysis covers every manufacturing subsector in Korea over the period between 2006 and 2018. Combining two distinctive approaches from the previous literature, the AR approach and primary energy-based analysis gives us helpful findings for a climate policy. First, the overall activity effect estimated from the physical output indicator is lower than that from the monetary output indicator. The monetary indicator shows that the share of energy-intensive industries decreases, whereas the physical indicator shows the opposite. Second, in terms of energy efficiency, the intensity effect is estimated as an increasing factor of energy use, whereas inversed results are shown when we use the monetary indicator. Lastly, unlike the previous studies, the AR approach results indicate that Korean manufacturing sectors have been shifting toward an energy-intensive, so it is hard to anticipate positive intensity effects, which means decreasing energy consumption factor, for a while. These results support why analyzing the driving forces of energy consumption through the AR approach and primary energy base is highly recommended.


2020 ◽  
Vol 9 (3) ◽  
pp. 490
Author(s):  
Iman Al-Ayouty

Subsidizing electricity and non-electrical energy products has affected manufacturing output in Egypt, especially given the structure of Egypt’s manufacturing sector which leaning heavily towards capital- and energy-intensive products. This effect is captured in a production function estimated for the twenty industries making up Egypt’s manufacturing sector over the period 2002-2016. With homogeneous parameters, the estimated output elasticity of energy is 0.28. With panel member parameter heterogeneity, the output elasticity of energy is positive and statistically significant in ten manufacturing industries. Negative and statistically significant elasticity is however found in refined petroleum products, fabricated metal products, and electrical machinery and equipment. This indicates suboptimal energy use. Elasticity is also negative, though statistically insignificant, in: textiles, basic metals, and “other manufacturing”. Except for “other manufacturing”, industries of negative elasticity are all energy-intensive.  Moreover, refined petroleum, fabricated metals and basic metals are pollution-intensive. A priority policy measure is to remove subsidies from energy inefficient and polluting industries as opposed to mere ‘across-the-board’ removal. Keywords: energy consumption; manufacturing industries; energy- and pollution intensive; Egypt


Author(s):  
Swapan Saha ◽  
Dharma Hagare ◽  
Jiaqi Zhou ◽  
Md Kamrul Hassan

Space cooling and heating in residential sector is significant contributor to energy consumption in Australia. Therefore, it is important to reduce the cooling and heating requirements. The selection of a good walling system helps to save energy by homes. This research compared the thermal efficiency of a modern house (constructed using brick veneer walls with concrete floor slab) with an old house (constructed using fibro cement walls raised timber floor) using the AccuRate simulation tool. A standard house with two living rooms, one kitchen, one laundry and four bedrooms are simulated in a Sydney Suburb in Australia. It was found that modern house showed lower inside temperature variation than the old house all year around. The results also showed that the modern house has a lower energy consumption for space heating and cooling than the old house. The annual energy use for space heating and cooling in both the modern house and old house were 5197 kWh and 15,712 kWh respectively. Moreover, the annual energy costs were found to be $1,403 and $4,242 respectively for modern and old houses. The modern brick veneer house saved about 33 % of energy compared to old old house. When the net present value of the energy cost for f both houses over 50 years is computed, the energy cost of modern house was found to be $25,629 while it of old house is was $77,488 for the old house.


2012 ◽  
Vol 326-328 ◽  
pp. 366-371 ◽  
Author(s):  
D. Zambrana ◽  
A. Aranda ◽  
G. Ferreira ◽  
F. Barrio

Manufacturing processes involve the input of high quality energy and/or dissipation of low quality energy to manipulate a material; similarly the input of high quality material usually leads to the generation of low quality materials. A useful output involves the operation of conventional processes including a wide variety of functions such as lubrication, air compression, cooling, heating, pumping, etc., which have, on the one hand, high energy and material consumption and, on the other hand, losses due to an inherent departure from reversible processes. This paper presents an energy-flow methodology to determine the ratio between the additional energy required per useful energy unit for the manufacturing processes. As an application of the method proposed in this work, an assembly and welding production line is shown as a case study. This process is a common technique used in the manufacturing industry and its energy consumption depends on several parameters e.g. heat and electrical input. As a result of this study, the energy consumption of the production line has been reduced by approximately 30% from the 645.94 Wh of total energy consumption, where the consumption of real useful energy is 4% of this total.


2020 ◽  
Vol 42 (9) ◽  
pp. 424-430
Author(s):  
Mijung Park ◽  
Taeksoon Lee

Objective : The zinc electrowinning industry is one of the high energy consumption industries where energy saving is required. In the zinc electrowining process, electrode is a high energy consuming part. In order to reduce energy use in the electrolytic smelting industry, a comparative study was conducted on the current usage of Pb+Ag alloy electrode and insoluble composite metal oxide (MMO) electrode.Methods : In this study, a comparative evaluation of energy consumption was conducted between the generally used Pb+Ag alloy electrode and an insoluble MMO electrode. Aluminum was used as a reducing electrode. The actual on-site zinc electrowinning solution and ZnSO₄ simulated solution were prepared to estimate the electrode potential, voltage, zinc deposition efficiency, and lifetime characteristics under the current density of 500 A/m².Results and Discussion : The overvoltage of the insoluble MMO electrode was 28.9% lower and the voltage was 15.0% lower than that of Pb+Ag alloy electrode. The zinc deposition efficiency of the insoluble MMO electrode was higher 1.9% in the actual on-site zinc electrowinning solution and 6.3% in the simulated solution. Compared with the Pb+Ag alloy electrode in use, the insoluble composite metal oxide electrode exhibited low overvoltage, good voltage characteristics, and high current efficiency characteristics.Conclusions : When the energy consumption of the Pb+Ag alloy and the insoluble MMO electrodes was compared, The insoluble MMO electrode showed 17.0% lower energy consumption in the actual on-site zinc electrowinning solution and 23.8% lower in the ZnSO₄ simulated solution than Pb+Ag alloy electrode.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 168
Author(s):  
Bin Qian ◽  
Tao Yu ◽  
Haiquan Bi ◽  
Bo Lei

In recent years, the energy performance of public buildings has attracted substantial attention due to the significant energy-saving potential. As a semi-open high-space building, the high-speed railway station is obviously different from other public buildings and even traditional stations in terms of energy consumption and internal environment. This paper investigates the current energy consumption situation and environmental quality of 15 high-speed railway passenger stations in China. Results show that the energy consumption of the high-speed railway station is between 117–470 kWh/(m2·a). The energy consumption of the station is related to the area and the passenger flow. The energy use of the station using district heating is higher than that of the station without district heating in the same region. The higher glazing ratio induces good natural lighting in the station, but the uniformity of the lighting in the station is not good. The acceptable temperature range of passengers in winter is larger than that in summer. The average air change rate of the high-speed railway station is 3.2 h−1 in winter and 1.8 h−1 in summer, which is the main reason of high energy consumption of the HVAC (Heating Ventilation Air Conditioning) system in this kind of building.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 33 ◽  
Author(s):  
Yongming Zhang ◽  
Zhe Yan ◽  
Feng Yuan ◽  
Jiawei Yao ◽  
Bao Ding

Elevators were reported to cause an important part of building energy consumption. In general, each elevator has two operation states: The load state and power regeneration state. During operation, it has the potential to save energy by using regeneration power efficiently. In existing research, a set of energy storage devices are installed for every elevator, which is highly costly. In this paper, an energy conservation approach for elevators based on a direct current (DC) micro-grid is proposed, which has better economy. Then, an innovative energy-efficient device for the elevator group is designed based on a supercapacitor with similar characteristics and lifetimes. In a high-rise building case study, the experimental test and field data collection show that the innovative approach could result in a high energy efficiency within 15.87–23.1% and 24.1–54.5%, respectively. It is expected that the proposed method and designed device could be employed practically, saving energy consumption for elevator reconstruction.


2012 ◽  
Vol 538-541 ◽  
pp. 2864-2867
Author(s):  
Fang Ma ◽  
Li Hua Chen ◽  
Yi Ping Luo

It has become the theme of the times to save energy and protect environment, since the environment has been deteriorating and energy crisis has been increasingly nervous. The trend is the development of automotive lightweight direction, because of the close relationship among energy consumption and vehicle manufacturing and using cost. In this article, the automotive industry to use the material is still main traditional material of iron and steel high-energy through a statistical analysis of the automotive industry energy consumption. Furthermore, the method was described that the use of lightweight environmentally friendly materials to promote lightweight manufacturing technology in the automotive industry based on the statistical analysis of the automotive industry energy consumption. A new era is coming with automotive materials development. The research and application of lightweight materials on new car will become the focus of future vehicle development.


2019 ◽  
Vol 110 ◽  
pp. 02063
Author(s):  
Inga Skvortsova ◽  
Roman Latyshev ◽  
Yuri Truntsevsky

This article is a joint development of ways to improve the efficiency of business processes of energy use, taking into account innovative development and modernization of the economy in modern conditions. The energy industry is regarded as a leader in introducing innovations among other industries. The solutions are proposed to reduce energy consumption using advanced technologies. The features of energy supply to consumers in difficult conditions of economic, technical and climatic nature are identified, provided that large systems with a high level of complexity of system interconnection are integrated. The necessity of restructuring the entire global electric power network of the Russian Federation on the principles of multifunctional automation is substantiated. The main focus is on the use of “smart home” technology. This technology is considered as one of the most promising areas for the economical use of energy. The use of Smart Grid and Smart Home technologies significantly improves the efficiency of business processes using different types of energy, which allows planning plan energy consumption more accurately. The studies have shown that the use of innovative technologies can save up to a third of the energy consumed, but the population has no significant motivation to plan and save energy, which negatively affects the mass introduction of these technologies. However, there is a positive trend in the use of Smart Grid and Smart Home technologies in optimizing the management of business processes by business structures, for example, in optimizing security tools, managing household engineering systems, etc.


Sign in / Sign up

Export Citation Format

Share Document