Evaluating the Emission and Energy Impacts of Automated Buses on Urban Expressways

Author(s):  
Yixin Zhang ◽  
Xumei Chen ◽  
Lei Yu

In recent years, a series of traffic problems have emerged with continuously increasing traffic. Connected and autonomous vehicles (CAV) technology is considered to be an effective way to relieve these problems. It is believed that buses, trucks, and other special vehicles could be among of the first application areas to promote the development of CAV technology. Because of their features of high emissions of pollutants and high energy consumption, the improvement of environmental benefits for such heavy vehicles as buses is the focus in this research. Therefore, this paper aims to evaluate the impact of automated buses on emissions and energy consumption on urban expressways. To achieve the research objectives in this paper, the established automated buses model is embedded into the simulation platform with VISSIM dynamic link library. Models are developed for emissions and energy consumption calculations based on vehicle-specific power to quantify the environmental impact of automated buses. Two improvement strategies: dedicated managed lane and dedicated bus lane, are designed. Finally, a VISSIM simulation platform based on the Fourth Ring Road in Beijing (Xueyuan Bridge to Haidian Bridge) is built to conduct case studies. The results show that CAV technology in buses can reduce exhaust emissions and save energy. Moreover, the managed lane strategy brings a significant reduction in the emissions and energy consumption of automated buses. These findings can be used for the development of automated bus operational strategies focused on environmental benefits.

2014 ◽  
Vol 953-954 ◽  
pp. 890-895
Author(s):  
Hui Min Li ◽  
Cun Bin Li ◽  
Zhan Xin Ma

In recent years, with the rapid economic growth, the demand on the amount of energy in China is increasing. So the problem of how to improve the energy utilization efficiency and save energy consumption has to be tackled. The traditional CCR model and BCC model used in the study of provincial energy efficiency do not take the impact of technological progress into consideration. Therefore, the paper uses the generalized DEA method to research the energy utilization efficiency of China’s 29 provinces, that is, to evaluate and analyze the energy utilization efficiency by selecting the capital stock, employment and total energy consumption of China’s provinces as input factors and GDP, per capital GDP as output factors, and then draw tables showing each province’s change of average annual overall efficiency and the pure technology changes, and finally analyze the regularities underlying these changes.


Author(s):  
Nimra Kanwal ◽  
Nuhzat Khan

Buildings are the most important part of development activities, consumed over one-thirds of the global energy. Household used the maximum energy around the world, likewise in Pakistan residential buildings consumed about half of total energy (45.9% per year). The study aims to analyze the impact of building design on climate of Metropolitan City Karachi, Pakistan and to evaluate the change in urbanization patterns and energy consumption in the buildings. To have better understanding of the issues correlations was established amongst population, urbanization patterns, green area, number of buildings (residential and commercial), building design, energy consumption and metrological records (climate change parameters) by collecting the data from the respective departments. With the help of the collected data amount of carbon dioxide was estimated. The results reveled that during last 36 years the urban population of Karachi increased exponentially from 5,208,000 (1981) to 14,737,257 (2017) with increase in urbanized area from 8.35 km2 (1946) to 3,640 km2 (2017) that may led to reduce the green area of the city from 495,000 hectors (1971) to 100,000 hectors (2015). Moreover, the building’s design and numbers are being changed from 21 high-rise buildings (2009) to 344 (2017). It may be concluded that change in temperature pattern and climatic variability of the city may be due to increase in population and change in lifestyle that lead to high energy consumption that is prime source of increased in CO2 emission in the environment of Karachi city, However, Greenhouse Gases (GHG) releases are much lower than the levels reported from metropolitan cities around the world.


2020 ◽  
Vol 12 (21) ◽  
pp. 8908
Author(s):  
Rubén Garrido-Yserte ◽  
María-Teresa Gallo-Rivera

Higher education institutions (HEIs) have a huge potential to save energy as they are significantly more energy-intensive in comparison with commercial offices and manufacturing premises. This paper provides an overview of the chief actions of sustainability and energy efficiency addressed by the University of Alcalá (Madrid, Spain). The policies implemented have shifted the University of Alcalá (UAH) to become the top-ranking university in Spain and one of the leading universities internationally on environmentally sustainable practices. The paper highlights two key elements. First, the actions adopted by the managerial teams, and second, the potential of public–private collaboration when considering different stakeholders. A descriptive study is developed through document analysis. The results show that energy consumption per user and energy consumption per area first fall and are then maintained, thereby contributing to meeting the objectives of the Spanish Government’s Action Plan for Energy Saving and Efficiency (2011–2020). Because of the research approach, the results cannot be generalized. However, the paper fulfils an identified need to study the impact of HEIs and their stakeholders on sustainable development through initiatives in saving energy on their campuses and highlights the role of HEIs as test laboratories for the introduction of innovations in this field (monitoring, sensing, and reporting, among others).


2014 ◽  
Vol 981 ◽  
pp. 695-700
Author(s):  
Chuan Sheng Xie ◽  
Peng Yuan Zhong ◽  
Chen Chen Zhao ◽  
Cheng Ying Zhou

As a measure of demand-side management, efficiency power plant (EPP) can save energy and bring economic and environmental benefits to the power system, although the widely used EPP technology may have negative effect on both power system stability and operation costs. The concept of EPP and its related characteristics such as capacity, output curve, and cost were introduced, and a probabilistic production simulation model based on the equivalent energy function (EEF) method was established to analysis the impact and benefits of EPP. With a numerical example, a result is found that EPP can not only improve the reliability and load rate of power system, thus reducing the social costs of power outage, but also reduce the total production and operating costs of power system.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 33 ◽  
Author(s):  
Yongming Zhang ◽  
Zhe Yan ◽  
Feng Yuan ◽  
Jiawei Yao ◽  
Bao Ding

Elevators were reported to cause an important part of building energy consumption. In general, each elevator has two operation states: The load state and power regeneration state. During operation, it has the potential to save energy by using regeneration power efficiently. In existing research, a set of energy storage devices are installed for every elevator, which is highly costly. In this paper, an energy conservation approach for elevators based on a direct current (DC) micro-grid is proposed, which has better economy. Then, an innovative energy-efficient device for the elevator group is designed based on a supercapacitor with similar characteristics and lifetimes. In a high-rise building case study, the experimental test and field data collection show that the innovative approach could result in a high energy efficiency within 15.87–23.1% and 24.1–54.5%, respectively. It is expected that the proposed method and designed device could be employed practically, saving energy consumption for elevator reconstruction.


Buildings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 21 ◽  
Author(s):  
Khadija Jnat ◽  
Isam Shahrour ◽  
Ali Zaoui

Energy consumption in the social housing sector constitutes a major economic, social, and environmental issue, because in some countries such as France, social housing accounts for about 19% of the housing sector. In addition, this sector suffers from ageing, which results in high energy consumption, deterioration in the occupant quality of life, and high pressure on the budget of low-income occupants. The reduction of the energy consumption in this sector becomes a “must”. This reduction can be achieved through energy renovation and innovation in both energy management and occupant involvement by using smart technology. This paper presents a contribution to this goal through the investigation of the impact of smart monitoring on energy savings. The research is based on monitoring of comfort conditions in an occupied social housing residence in the North of France and the use of building thermal numerical modeling. Results of monitoring show that the indoor temperature largely exceeds the regulations requirements and the use of a smart system together with occupant involvement could lead to significant savings in heating energy consumption. The novelty in this paper concerns the use of comfort data from occupied social housing residence, occupation conditions, and building thermal modeling to estimate energy savings. The proposed methodology could be easily implemented to estimate heating energy savings in social housing buildings that lack individual energy consumption monitoring.


2012 ◽  
Vol 538-541 ◽  
pp. 2864-2867
Author(s):  
Fang Ma ◽  
Li Hua Chen ◽  
Yi Ping Luo

It has become the theme of the times to save energy and protect environment, since the environment has been deteriorating and energy crisis has been increasingly nervous. The trend is the development of automotive lightweight direction, because of the close relationship among energy consumption and vehicle manufacturing and using cost. In this article, the automotive industry to use the material is still main traditional material of iron and steel high-energy through a statistical analysis of the automotive industry energy consumption. Furthermore, the method was described that the use of lightweight environmentally friendly materials to promote lightweight manufacturing technology in the automotive industry based on the statistical analysis of the automotive industry energy consumption. A new era is coming with automotive materials development. The research and application of lightweight materials on new car will become the focus of future vehicle development.


2019 ◽  
Vol 111 ◽  
pp. 04027
Author(s):  
Aymeric Novel ◽  
Francis Allard ◽  
Patrice Joubert

Energy performance guarantee projects aim at achieving a given energy consumption in real life conditions. Building energy consumption monitoring during operation phase often reveals that energy consumption is sensitive to building spaces use and systems operation quality, especially for buildings with high energy performance characteristics [7]. Other investigations show the impact of building users’ behaviour on energy consumption [28]. These factors must be added to climate factors for energy consumption prediction during operation phase. Number of factors and possible combinations is very high. Building energy modeling is limited regarding this issue and metamodeling has been used to solve this problem [25]. We developed metamodels that are polynomial functions using D-optimal design of experiment (DOE) approach. Such metamodels can become operational tools to use in the IPMVP framework, associated with a M&V plan. This paper shows the application of the method on a cultural building that comprises numerous systems and usages. We obtain a reliable metamodel of the energy consumption as a function of climate, operation, and space use factors. which meets IPMVP [11] and ASHRAE Guideline 14 [3] modeling uncertainties criteria. We also determine the global uncertainty resulting from predictors’ uncertainties propagation and modelling uncertainty associated with the metamodel.


2019 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Ehsan Sabri Islam ◽  
Ayman Moawad ◽  
Namdoo Kim ◽  
Aymeric Rousseau

Transportation system simulation is a widely accepted approach to evaluate the impact of transport policy deployment. In developing a transportation system deployment model, the energy impact of the model is extremely valuable for sustainability and validation. It is expected that different penetration levels of Connected-Autonomous Vehicles (CAVs) will impact travel behavior due to changes in potential factors such as congestion, miles traveled, etc. Along with such impact analyses, it is also important to further quantify the regional energy impact of CAV deployment under different factors of interest. The objective of this paper is to study the energy consumption of electrified vehicles in the future for different penetration levels of CAVs deployment in the City of Chicago. The paper will further provide a statistical analysis of the results to evaluate the impact of the different penetration levels on the different electrified powertrains used in the study.


2014 ◽  
Vol 522-524 ◽  
pp. 845-848
Author(s):  
Ji Gao Li ◽  
Qian Zhang

According the high energy consumption and pollution in foundry industry, the reason of high energy consumption and the source of the pollution were analyzed. Based on the analysis, for the sustainable development of foundry industry, some effective measures were suggested: defining the responsibility of all referred parties (governor and enterpriser); trying to save energy and protect environment from the source; reusing the waste scientifically.


Sign in / Sign up

Export Citation Format

Share Document