Ionic Transport in PMMA-NaCF3SO3 Gel Polymer Electrolyte

2012 ◽  
Vol 545 ◽  
pp. 259-263 ◽  
Author(s):  
Zurina Osman ◽  
Siti Mariam Samin ◽  
Lisani Othman ◽  
Khairul Bahiyah Md. Isa

In this work, the polymethylmethacrylate (PMMA) based gel polymer electrolyte samples have been prepared by the solution casting technique. The composition range of the salt was from 3 wt% to 35 wt%. The ionic conductivity of the samples was measured using a.c. impedance technique. The highest room temperature conductivity was obtained from the sample containing 30 wt% of NaCF3SO3 salt, i.e. 5.31 x 10-3 S cm-1. The increase in the ionic conductivity with increasing salt concentrations is due to the increase in both concentration and mobility of charge carriers. The decrease in ionic conductivity at higher salt concentrations can be explained by aggregation of the ions, leading to the formation of ion-pair, thus decreasing the number of charge carriers and hence the ionic mobility. The conductivity-temperature dependence obeys the Arrhenius rule from which the activation energy was evaluated. The ionic transference number estimated by dc polarization method revealed that the conducting species are predominantly ions.

2020 ◽  
Vol 32 (2) ◽  
pp. 208-219
Author(s):  
CP Singh ◽  
PK Shukla ◽  
SL Agrawal

Ion conducting gel polymer electrolytes (GPEs) are being intensively studied for their potential applications in various electrochemical devices. The poly(vinyl alcohol)-based GPE films containing ammonium acetate (NH4CH3COO) salt have been studied for various concentrations of salt. The gel electrolyte films (GPEs) have been prepared using solution casting technique. Structural characterization carried out using X-ray diffraction reveals an increase in the amorphous nature of the samples on increasing salt concentration up to 70 wt%. The complexation of polymer and salt has been studied by Fourier-transform infrared analysis. Ionic conductivity of the GPEs has been found to increase with salt concentration and reaches an optimum for an intermediate concentration. The room temperature conductivity isotherm exhibits a maximum in conductivity of 2.64 × 10−4 Scm−1 for 65 wt% salt concentration. The temperature dependence of ionic conductivity exhibits a combination of Arrhenius and Vogel–Tamman–Fulcher behavior. Ion transport in the electrolyte system has been explored using dielectric response of the material and the observed variation in conductivity is suitably correlated to the change in charge carrier concentration and mobility of charge carriers.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1306
Author(s):  
Shiqi Wang ◽  
Chun Wei ◽  
Wenwen Ding ◽  
Linmin Zou ◽  
Yongyang Gong ◽  
...  

A high-voltage electrolyte can match high-voltage positive electrode material to fully exert its capacity. In this research, a sulfolane plasticized polymer electrolyte was prepared by in situ photocuring. First, the effect of the sulfolane content on the ionic conductivity of the gel polymer electrolyte was investigated. Results showed that the ionic conductivity variation trend was in good agreement with the exponential function model for curve fitting. Second, the activation energy was calculated from the results of the variable temperature conductivity tests. The activation energy was inversely proportional to the sulfolane content. For the sulfolane content of 80 wt. % in gel polymer electrolyte (GPE)-80 (19.5 kJ/mol), the activation energy was close to conventional liquid electrolyte (9.5 kJ/mol), and the conductivity and electrochemical window were 0.64 mS/cm and 5.86 V, respectively. The battery cycle performance test showed that the initial specific discharge capacities of GPE-80 and liquid electrolyte were 176.8 and 148.3 mAh/g, respectively. After 80 cycles, the discharge capacities of GPE-80 and liquid electrolyte were 115.8 and 41.1 mAh/g, and the capacity retention rates were 65.5% and 27.7%, respectively; indicating that GPE-80 has a better specific discharge capacity and cycling performance than the liquid electrolyte. SEM images indicated that GPE-80 can suppress the growth of lithium dendrites. The EDS test showed that GPE-80 can inhibit the dissolution of metal ions in the cathode material.


2011 ◽  
Vol 8 (1) ◽  
pp. 347-353 ◽  
Author(s):  
Anji Reddy Polu ◽  
Ranveer Kumar

Ionic conductivity of poly(ethylene glycol) (PEG) - ammonium chloride (NH4Cl) based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6S cm-1was obtained at 15% by weight of TiO2and that without TiO2filler was found to be 9.58×10−7S cm−1. The conductivity has been improved by 8 times when the TiO2filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi) decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.


Ionics ◽  
2021 ◽  
Author(s):  
Supriya K Shetty ◽  
Ismayil ◽  
Shreedatta Hegde ◽  
V Ravindrachary ◽  
Ganesh Sanjeev ◽  
...  

AbstractNa+ ion-conducting solid polymer electrolyte (SPE) of sodium salt of carboxymethyl cellulose (NaCMC) doped with sodium nitrate (NaNO3) was developed by solution casting method. FTIR technique confirmed the formation of hydrogen bonding between $$ {NO}_3^{-} $$ NO 3 − anion and functional groups of NaCMC. XRD study revealed the low degree of crystallinity that reduced upon doping. Impedance spectroscopy was adapted in order to analyze the conductivity and dielectric relaxation phenomena of the polymer-salt complex. FTIR deconvolution technique was employed to understand the factor that influences the ionic conductivity in SPE; concentration of mobile ions and ionic mobility both play a vital role. Ion transference number has been found out to be > 0.97 for all samples indicating that the conducting species are primarily ions. The highest ionic conductivity of ̴ 3 × 10−3 Scm−1 with the mechanical strength of 30.12 MPa was achieved for a host containing 30 wt.% NaNO3 at ambient temperature.


2021 ◽  
Vol 317 ◽  
pp. 434-439
Author(s):  
Siti Aminah Mohd Noor ◽  
Chow Peng Wong ◽  
Mariah Zuliana Dzulkipli ◽  
Mohd Sukor Su'ait ◽  
Lee Tian Khoon ◽  
...  

This study reported the preparation and characterization of gel polymer electrolyte (GPE) using poly (vinylidine fluoride-co-hexafluoropropylene) (PVdF-HFP), lithium perchlorate (LiClO4) and 1-butyl-3-metilimmidazoliumhexafluorophosphate [PF6]. The GPE were prepared by solution casting technique. [Bmim] [PF6] ionic liquid is used as an additive for the purpose of increasing the ionic conductivity of GPE. Morphological analysis showed that the electrolyte gel polymer sample had a smooth and flat surface with the addition of [Bmim] [PF6] and no phase separation effect was observed. This shows the compatibility between PVdF-HFP and [Bmim] [PF6]. ATR-FTIR analysis showed that C-F bond related peaks experienced peak changes in terms of intensity and peak shifting. This proves the interaction of the imidazolium ion with the fluorine atom through the formation of coordinate bonds. Ionic conductivity analysis showed that PVdF-HFP-[Bmim][PF6] samples reached a maximum room temperature ionic conductivity value of 2.44 × 10-4 S cm-1 at 60 wt.% [Bmim] [PF6]. When 20 wt.% of LiClO4 added to the system, the ionic conductivity increased one magnitude order to 2.20 × 10-3 S cm-1.


2018 ◽  
Vol 08 (01) ◽  
pp. 1850005 ◽  
Author(s):  
Khushbu Gohel ◽  
D. K. Kanchan

Poly(vinylidene fluoride-hexafluropropylene) (PVDF-HFP) and poly(methyl methacrylate) (PMMA)-based gel polymer electrolytes (GPEs) comprising propylene carbonate and diethyl carbonate mixed plasticizer with variation of lithium perchlorate (LiClO4) salt concentrations have been prepared using a solvent casting technique. Structural characterization has been carried out using XRD wherein diffraction pattern reveals the amorphous nature of sample up to 7.5[Formula: see text]wt.% salt and complexation of polymers and salt have been studied by FTIR analysis. Surface morphology of the samples has been studied using scanning electron microscope. Electrochemical impedance spectroscopy in the temperature range 303–363[Formula: see text]K has been carried out for electrical conductivity. The maximum room temperature conductivity of 2.83[Formula: see text][Formula: see text]S cm[Formula: see text] has been observed for the GPE incorporating 7.5[Formula: see text]wt.% LiClO4. The temperature dependence of ionic conductivity obeys the Arrhenius relation. The increase in ionic conductivity with change in temperatures and salt content is observed. Transport number measurement is carried out by Wagner’s DC polarization method. Loss tangent (tan [Formula: see text]) and imaginary part of modulus ([Formula: see text]) corresponding to dielectric relaxation and conductivity relaxation respectively show faster relaxation process with increasing salt content up to optimum value of 7.5[Formula: see text]wt.% LiClO4. The modulus ([Formula: see text]) shows that the conductivity relaxation is of non-Debye type (broader than Debye peak).


2018 ◽  
Vol 36 (2) ◽  
pp. 185-192 ◽  
Author(s):  
A.J. Nagajothi ◽  
R. Kannan ◽  
S. Rajashabala

Abstract Chitosan has been successfully incorporated as a filler in a polyethylene oxide (PEO) and lithium trifluoromethanesulfonate (LiCF3SO3) matrix with a combination of plasticizers, namely 1,3-dioxolane (DIOX) and tetraethylene glycol dimethylether (TEGDME). The composite gel-polymer electrolyte (CGPE) membranes were prepared by solution casting technique in an argon atmosphere. The prepared membranes were subjected to SEM, TG/DTA and FT-IR analyses. A Li/CGPE/Li symmetric cell was assembled and the variation of interfacial resistance was measured as a function of time. The lithium transference number (Li+t) was measured and the value was calculated as 0.6 which is sufficient for battery applications. The electrochemical stability window of the sample was studied by linear sweep voltammetry and the polymer electrolyte was found to be stable up to 5.2 V.


2015 ◽  
Vol 1107 ◽  
pp. 181-186
Author(s):  
Zaidatul Salwa Mahmud ◽  
N.H.M. Zaki ◽  
R. Zakaria ◽  
Mohamad Faizul Yahya ◽  
Ab Malik Marwan Ali

This paper reports on the conductivity-temperature studies of gel polymer electrolytes (GPEs) based on 49% poly (methyl methacrylate) grafted-natural rubber (MG49) doped with lithium triflate salt (LiTf) and plasticized with ethylene carbonate (EC). The GPE films are prepared by solution cast technique. The X-ray diffraction (XRD) studies reveal the polymer electrolyte systems are amorphous. AC impedance spectroscopy is carried out in the temperature range between 303 and 373 K. The magnitudes of conductivity observed are strongly dependent on salt concentration and temperature. The high ionic conductivity at elevated temperatures of GPE is attributed to the high ionic mobility of charge carriers. The ionic migration is seen to follow the VTF behavior and approaches to Arrhenius rule at high and low at temperature. Ionic conductivity relaxation appears to be a characteristic of the ionic polarization and the modulus formalism studies confirmed the GPEs in the present investigation are ionic conductors.


2013 ◽  
Vol 334-335 ◽  
pp. 137-142 ◽  
Author(s):  
Lisani Othman ◽  
Khairul Bahiyah Md. Isa ◽  
Zurina Osman ◽  
Rosiyah Yahya

The gel polymer electrolytes (GPEs) composed of polymethylmethacrylate (PMMA) with lithium trifluoromethanesulfonate (LiCF3SO3) salt dissolved in a binary mixture of ethylene carbonate (EC) and propylene carbonate (PC) organic solvents have been prepared by the solution casting technique. The samples are prepared by varying the salt concentrations from 5 wt.% to 30 wt.%. Impedance spectroscopy measurement has been carried out to determine the ionic conductivity of the samples. The sample containing 25 wt.% of LiCF3SO3salt exhibits the highest room temperature ionic conductivity of 2.56 x 10-3S cm-1. The conductivity of the GPEs has been found to depend on the salt concentration added to the sample, while at higher salt concentration reveals a decrease in the ionic conductivity due to ions association. The temperature dependence of conductivity from 303 K to 373 K is found to obey the Arrhenius law. The ionic transference number,tiof GPEs has been estimated by the DC polarization method and the value is found to be 0.98, 0.93, and 0.97 for the sample containing 25 wt.%, 5 wt.% and 30 wt.% respectively. This result is consistent with the conductivity studies.


Sign in / Sign up

Export Citation Format

Share Document