Experimental Study on Effect of Hot EGR on Combustion Characteristic of HICE under High Load Conditions

2012 ◽  
Vol 562-564 ◽  
pp. 1024-1027
Author(s):  
Xing Hua Liu ◽  
Dao Jing Wang ◽  
Fu Shui Liu

In order to study the effect of hot EGR on combustion characteristic of hydrogen internal combustion engine (HICE), experimental study was taken on a 4 cylinder, 2.0L HICE. The speed was 3000rpm, and the throttle was fully open, the load was adjusted through quality regulation. When the hydrogen flow ratio was 2.79kg /h, the ignition advanced angle was optimized as maximum brake torque (MBT) timing, then the EGR valve was opened, and EGR valve was adjusted to control the flow of exhaust gas that back into the intake manifold. The test results show that: as the EGR ratio changing from 0(the EGR valve is fully closed) to 43.8%(the EGR valve is fully opened), the in-cylinder pressure is decreasing with the EGR ratio increasing; the coefficient of variation in indicated mean effective pressure (imepCOV) is not changing significantly at high load conditions, changing range is less than 1%; CA50 is postponed from 11.8oCAto15.2 oCA with EGR ratio increasing.

Author(s):  
Nick Papaioannou ◽  
Felix CP Leach ◽  
Martin H Davy ◽  
Adam Weall ◽  
Brian Cooper

The effects of different exhaust gas recirculation (EGR) strategies on engine efficiency and the resulting energy flows at two speed/load conditions (1500 r/min/6.8 bar net indicated mean effective pressure (nIMEP) and 1750 r/min/13.5 bar nIMEP) were studied using a first law analysis approach. The EGR strategies tested were as follows: cooled high-pressure exhaust gas recirculation (baseline), the application of exhaust gas recirculation with the swirl flap closed and the use of exhaust gas recirculation under constant λ conditions. The closed swirl flap exhaust gas recirculation strategy reduced brake efficiency under high load conditions and increased heat transfer to the coolant for both load cases. Soot and CO emissions increased at high load, however, with an increase in NOx relative to the baseline case. The constant λ exhaust gas recirculation strategy reduced brake efficiency under low load, as well as the heat flow to the coolant for both load cases. The constant λ exhaust gas recirculation strategy benefited smoke emissions and increased combustion exhaust gas recirculation tolerance, albeit with a penalty in NOx emission.


Author(s):  
ALVARO ROCHA ◽  
Luan Correia ◽  
Raimundo Duarte ◽  
Emerson da Trindade Marcelino

2021 ◽  
Vol 383 ◽  
pp. 542-553
Author(s):  
Elías A. Roces-Alonso ◽  
Jesús González-Galindo ◽  
José Estaire

2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


1983 ◽  
Vol 105 (1) ◽  
pp. 125-129
Author(s):  
Baoshi Chen ◽  
Tianyi Zhang

Test results obtained from a two-stage fan are analysed and the reasons that caused the design performance target not to be attained are presented in this paper. Addition of a partspan shroud on rotor 1 caused higher losses and changed radial distribution of parameters. Modification on the flowpath and chord length of stator 1 resulted in excessively high inlet Mach number and flow separation in the hub region. The high load and high incidence at the hub of rotor 2 caused higher losses and reduced stall margin of the fan.


Sign in / Sign up

Export Citation Format

Share Document