The Coupling Effect of Composite Material with Foundation Pile and Soil Mass

2012 ◽  
Vol 580 ◽  
pp. 477-480
Author(s):  
Yong Suo Li

The computer-aided design method is used in modeling for the interaction between pile and geotechnical material soil. The behavior of the shear coupling springs is identical to the shear behavior of a grouted cable. Then a numerical model is founded by FLAC3D, deformation and stress responses are obtained as well as the mechanical response of pile during calculation, whose result reveals the mechanism of pile with soil under the load of gravitation and load transferring mode along pile shaft for different ground surface surcharge load, during simulation, the soil consists of two types, the less consolidated soil and normal consolidated soil, both the negative skin friction stress and positive skin friction stress are studied.

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1449
Author(s):  
Wenfeng Wang ◽  
Shaochan Duan ◽  
Haoran Zhu

In order to improve the durability of the asphalt pavement on a cement concrete bridge, this study investigated the effect of the modulus of the asphalt mixture at the bottom layer on the mechanical response of bridge pavement, along with a type of emerging bridge pavement structure. In addition, the design method and pavement performance of a high-modulus asphalt mixture were investigated using laboratory and field tests, and the life expectancy of the deck pavement structure was predicted based on the rutting deformation. The results showed that the application of a high-modulus asphalt mixture as the bottom asphalt layer decreased the stress level of the pavement structure. The new high-modulus asphalt mixture displayed excellent comprehensive performance, i.e., the dynamic stability reached 9632 times/mm and the fatigue life reached 1.65 million cycles. Based on the rutting depth prediction, using high-modulus mixtures for the bridge pavement prolonged the service life from the original 5 years to 10 years, which significantly enhanced the durability of the pavement structure. These research results could be of potential interest for practical applications in the construction industry.


1972 ◽  
Vol 9 (2) ◽  
pp. 127-136 ◽  
Author(s):  
M. Bozozuk

Large negative skin friction loads were observed on a 160 ft (49 m) steel pipe test pile floating in marine clay. The test pile was driven, open-ended, on the centerline of a 30 ft (9 m) high granular approach fill on the Quebec Autoroute near Berthierville. Since the installation was made in 1966 the fill has settled 21 in. (53 cm), dragging the pile down with it. Negative skin friction acting along the upper surface of the pile was resisted by positive skin friction acting along the lower end as it penetrated the underlying clay. Under these conditions the pile compressed about [Formula: see text] (2 cm). Analysis of the axial strains indicated that a peak compressive load of 140 t developed at the inflection point between negative and positive skin friction 73 ft (22 m) below the top of the pile. Negative and positive skin friction acting on the upper surface of the pile exceeded the in situ shear strength and approached the drained strength of the soil where excess pore water pressures had dissipated. At the lower end where the positive excess pore pressures were high and relative movement between the pile and the soil was large, the positive skin friction approached the remoulded strength as measured with the field vane. Skin friction was increasing, however, as positive escess pore pressures dissipated.This paper shows that skin friction loads are related to the combination of (a) in situ horizontal effective stresses, (b) horizontal stresses due to embankment loads, and (c) horizontal stresses due to differential settlement of the fill.


Author(s):  
Jian Zhao ◽  
Yu Huang ◽  
Pengbo Liu ◽  
Qifei Fang ◽  
Renjing Gao

Different from traditional accelerometer, multi-threshold acceleration switch can be triggered to different working states by external accelerations without complex auxiliary circuits and controlling elements, which has great application potentials in aerospace, vehicle safety and consumer electronics. In this paper, a novel multi-threshold acceleration switch with anti-overloading function is designed and fabricated by incorporating both magnetic multi-stable structures and compliant cantilever contacts, which also can be used to distinguish specific acceleration pulse. To enhance the contact reliability, the magnetic compliant locking mechanism is introduced to prevent bouncing back phenomenon under overload acceleration. Considering the air-damping and multi-magnetic fields coupling effect, the dynamic design model is proposed for analyzing the nonlinear switch response. Then, threshold accelerations can be determined as ac1 = 3.78g, ac2 = 10.2g and ac3 = 6.95g in one direction while threshold accelerations in opposite direction are ac4 = 4.9g, ac5 = 8.47g and ac6 = 5.6g. The switch shows excellent threshold acceleration detection capability, and the inertial switch keeps open while the external acceleration is 0.2g less than the predefined threshold value. The experimental results show that the threshold acceleration with specific pulse width can be accurately identified, and the switch can bear strong overload acceleration comparing to traditional switches. Consequently, the proposed design method provides a new way for intelligent mechanical inertial sensors.


2014 ◽  
Vol 614 ◽  
pp. 107-112
Author(s):  
Xiao Yu Yin ◽  
Xian Ping Xie ◽  
Zhen Li ◽  
Jian Gong Li ◽  
Ting Jun Wang ◽  
...  

Expert systems, or knowledge based systems, are programs in which the answer to a user-posed question is reached by logical or plausible inference rather than strictly by calculation, although calculation routines can form a major part of an expert system. Based on the integration of expert system technology and optimization technology, an intelligent computer aided design method for mine ventilation systems is proposed in this paper. Firstly, the structure and control algorithm of the intelligent design system are explored. Secondly, the knowledge types required for the mine ventilation expert system and the acquiring method of knowledge are discussed. Finally, the inference method of this expert system is put forward.


2002 ◽  
Vol 124 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Akira Goto ◽  
Motohiko Nohmi ◽  
Takaki Sakurai ◽  
Yoshiyasu Sogawa

A computer-aided design system has been developed for hydraulic parts of pumps including impellers, bowl diffusers, volutes, and vaned return channels. The key technologies include three-dimensional (3-D) CAD modeling, automatic grid generation, CFD analysis, and a 3-D inverse design method. The design system is directly connected to a rapid prototyping production system and a flexible manufacturing system composed of a group of DNC machines. The use of this novel design system leads to a drastic reduction of the development time of pumps having high performance, high reliability, and innovative design concepts. The system structure and the design process of “Blade Design System” and “Channel Design System” are presented. Then the design examples are presented briefly based on the previous publications, which included a centrifugal impeller with suppressed secondary flows, a bowl diffuser with suppressed corner separation, a vaned return channel of a multistage pump, and a volute casing. The results of experimental validation, including flow fields measurements, were also presented and discussed briefly.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Peixiao Zheng ◽  
Gaoming Jiang ◽  
Honglian Cong

Abstract Recently, there is an increasing interest in design of circular weft jacquard because of the pursuit of fashion and comfort. Aiming at the complexity of the computer-aided design method of the existing circular weft-knitted jacquard fabrics, which is not conducive to the rapid design and intelligible for designers, a design method was proposed to transform pattern notation into knitting diagram efficiently, which was based on knitting rules and its creation as a set of jacquard modules. Knitting characteristics of jacquard fabrics were studied as a precondition. On this basis, the design procedures of jacquard modules were analyzed and illustrated by taking tricolor bird's eye backing jacquard as an example. Jacquard modules with various jacquard effects were designed and stored in a jacquard module database. To mathematically describe pattern notation, knitting diagram, and jacquard module, two-dimensional matrixes were established by the method of mathematical modeling, and a corresponding algorithm for the transformation of the pattern to knitting information according to the knitting rules of jacquard modules, which can be applied to ordinary jacquard fabrics was summarized. The project of tricolor circular weft-knitted jacquard with bird's eye in the reverse and four-color air-layer jacquard were taken for instance to verify the models and algorithm. The results obtained show that the approach can efficiently and conveniently realize the designation and machine-knitting of weft-knitted jacquard fabric, which provide a theoretical basis and notation of modeling for the computer-aided design of circular weft-knitted jacquard fabrics.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4423-4429
Author(s):  
Hai-Xiao Lin ◽  
Qiu-Yu Pan ◽  
Bang-Hua Yao ◽  
Wen-Long Shen ◽  
Feng Yang

Based on the characteristics of mechanical response of coal rock under loading, an elastic-brittle damage constitutive relation of coal rock has been proposed, which has been extended to the 3-D stress state, based on the geological strength index. Besides, a numerical calculation method based on the elastic-brittle damage the?ory has been developed, by analyzing the seepage-stress coupling effect. Then, a computing program for fracture network transformation has been composed to perform numerical simulation of forming process of coal rock under different working conditions, by the APDL language in the ANSYS software platform. The mechanical mechanism of fracture network forming process of coal rock has been further analyzed.


1984 ◽  
Vol 106 (4) ◽  
pp. 524-530 ◽  
Author(s):  
S. Akagi ◽  
R. Yokoyama ◽  
K. Ito

With the objective of developing a computer-aided design method to seek the optimal semisubmersible’s form, hierarchical relationships among many design objectives and conditions are investigated first based on the interpretive structural modeling method. Then, an optimal design method is formulated as a nonlinear multiobjective optimization problem by adopting three mutually conflicting design objectives. A set of Pareto optimal solutions is derived numerically by adopting the generalized reduced gradient algorithm, and it is ascertained that the designer can determine the optimal form more rationally by investigating the trade-off relationships among design objectives.


1993 ◽  
Vol 30 (3) ◽  
pp. 464-475 ◽  
Author(s):  
K.D. Eigenbrod

Slow, shallow ground movements in a slope near Yellowknife caused excessive tilting of timber piles that supported an engineering structure. To avoid damage to the structure, the pile foundations had to be replaced by rigid concrete piers that were designed to resist the forces of the moving soil mass. Downhill movements were rather slow and, during an initial inspection, were indicated only by soil that was pushed up against a series of piles on their uphill sides, while gaps had formed on their downhill sides. No open cracks or bulging was observed on the slope. A stability analysis indicated that the slope was not in a state of limit equilibrium. To obtain a better understanding of the creep movements in the slope and their effect on the rigid concrete piers, extensive instrumentation was carried out after the construction of the piers. This included slope indicators, piezometers, thermistors, and total-pressure cells against one of the concrete piers. In addition, a triaxial testing program was undertaken in which the effect of cyclic pore-water pressure changes on the long-term deformations of the shallow clay layer was investigated. From the data collected in the field and laboratory, it could be concluded that (i) tilting of the original timber piles was caused by downslope movements related to cyclic pore-water increases; (ii) the lateral soil movements increased almost linearly with depth from 2 m below the ground surface, with no indication of a slip surface; and (iii) the pressures exerted by the moving soil mass against the rigid concrete piers within the soil mass were equal to the passive resistance activated within the moving soil mass. Key words : soil creep, slope movements, soil pressures, pore-water pressures, freezing pressures, permafrost, cyclic loading.


2011 ◽  
Vol 48 (12) ◽  
pp. 1841-1854 ◽  
Author(s):  
Kentaro Yamamoto ◽  
Andrei V. Lyamin ◽  
Daniel W. Wilson ◽  
Scott W. Sloan ◽  
Andrew J. Abbo

This paper focuses mainly on the stability of a square tunnel in cohesive–frictional soils subjected to surcharge loading. Large-size noncircular tunnels are quickly becoming a widespread building technology by virtue of the development of advanced tunneling machines. The stability of square tunnels in cohesive–frictional soils subjected to surcharge loading has been investigated theoretically and numerically, assuming plane strain conditions. Despite the importance of this problem, previous research on the subject is very limited. At present, no generally accepted design or analysis method is available to evaluate the stability of tunnels or openings in cohesive–frictional soils. In this study, a continuous loading is applied to the ground surface, and both smooth and rough interface conditions between the loading and soil are modelled. For a series of tunnel geometries and material properties, rigorous lower and upper bound solutions for the ultimate surcharge loading of the considered soil mass are obtained by applying recently developed numerical limit analysis techniques. The results obtained are presented in the form of dimensionless stability charts for practical convenience, with the actual surcharge loads being closely bracketed from above and below. As a handy practical means, upper bound rigid-block mechanisms for square tunnels have also been developed, and the obtained values of collapse loads were compared with the results from numerical limit analysis to verify the accuracy of both approaches. Finally, an expression that approximates the ultimate surcharge load of cohesive–frictional soils with the inclusion of shallow square tunnels has been devised for use by practicing engineers.


Sign in / Sign up

Export Citation Format

Share Document