Formulating SLN and NLC as Innovative Drug Delivery Systems for Non-Invasive Routes of Drug Administration

2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.

2021 ◽  
Author(s):  
Faten Eshrati Yeganeh ◽  
Amir Eshrati Yeganeh ◽  
Bahareh Farasati Far ◽  
Iman Akbarzadeh ◽  
Sameer Quazi ◽  
...  

Abstract An innovative and customized drug delivery system for in vitro cancer treatment has been developed successfully by a simple one-step method. A CoFe2O4@Methionine core-shell nanoparticle was prepared by the reflux assay, in which amino acid on the surface makes the ferrite biocompatible, enhances the chemical stability of the compound, and increases the drug loading capacity. The synthesized nanoparticles were evaluated using SEM, TEM, FTIR, and VSM, while XRD and TGA analysis verified the presence of a coating amino acid on the surface of CoFe2O4. The appearance of a new peak for C≡N in the FTIR spectrum validates the synthesis of a letrozole-loaded carrier. Both uncoated CoFe2O4 and methionine-coated CoFe2O4 nanoparticles behave super-paramagnetically at room temperature, with saturation values of 46 emu/g and 16.8 emu/g, respectively. SEM and TEM were used to characterize the morphology and size of samples, revealing that the average particle size was around 28–29 nm. The loading of Letrozole and the effect of pH (5, 7.4) on the release behavior of the carrier were studied. The result of the drug release in pH (5) was about 88% higher than pH (7.4). Also, the preparation has been evaluated for determining its cytotoxicity using MCF-7, MDA-MB-231, and MCF10A cell lines as an in vitro model, and the results of in vitro experiments showed that CoFe2O4@Methionine could significantly reduce cancer in the cell model. These results demonstrate that core-shell nanoparticles were prepared that are biocompatible and have potential use as drug delivery.


Author(s):  
Xinyuan Wen ◽  
Xiaoqing Huang ◽  
Huosheng Wu

Purpose: To develop a novel intraarticular injection of diclofenac for the treatment of arthritis. Method: Diclofenac loaded nanoparticles were prepared by a nanoprecipitation technique using Eudragit L 100 as the polymer and polyvinyl alcohol as the surfactant. The nanoparticles were evaluated for particle size, zeta potential, scanning electron microscopy, drug release, encapsulation efficiency, and loading efficiency studies. The optimized nanoparticulate formulation was developed for intra articular injection. Intraarticulate injection was evaluated for pH, appearance, viscosity, osmolarity and syringability studies. The optimized injection formulation was tested in an arthritic model consisting of 25 rabbits. Result: Nanoprecipitation method was found to be suitable for diclofenac nanoparticles. The shape of the prepared nanoparticles was found to be spherical and devoid of any cracks and crevices. The average particle size of a diclofenac nanoparticle was found to range from 87±0.47 to 103±0.26 nm. The zeta potential of the prepared nanoparticles was found to be in the range of 0.598±0.34 to 0.826±0.25 mV. The encapsulation efficiency was found to be between 73.45% to 99.03%, while the drug loading was observed between 10.34 to 35.32%. The percentage drug release at 12 hours was found to range from 73.45% to 99.03%. Conclusion: The developed intraarticular injection was found to be within the physically and chemically accepted limits. Animals treated with the intra articular injection of diclofenac showed a significant reduction in swelling as compares to the other groups.


2021 ◽  
Vol 21 (9) ◽  
pp. 4565-4572
Author(s):  
Yongan Chen ◽  
Lei Cheng ◽  
Dan Yu ◽  
Jie Shen ◽  
Zhengrong Zhou ◽  
...  

The objective of this study was to prepare doxorubicin-loaded EGF modified PEG-nanoparticles and evaluate its targeting capability and therapeutic effects with EGFR-expressing hepatocellular carcinoma cells. The morphology, particle size distribution, and doxorubicin content of the nanoparticles were measured, and the drug loading and encapsulation efficiency were calculated. The doxorubicin nanoparticles prepared were regular circular, with good dispersibility, no adhesion, and the average particle size was (136.7±9.3) nm. The average encapsulation efficiency was (76.67±8.63)%, the average drug loading was (3.86±0.55)%; the drug release rate of doxorubicin was 100% for 12 h, and the doxorubicin nanometer was loaded. The drug release rate of the granules was 52.9% at 24 h and 81.2% at 144 h. The inhibition rate of the proliferation of hepatocarcinoma cells by the doxorubicin-containing nanoparticles was slower than that of doxorubicin, and the IC50 of the two cells was 1.844 and 0.345 μg/mL, respectively. At the same time, apoptosis and cycle analysis showed that the doxorubicin nanoparticles could significantly inhibit the cell cycle of hepatoma cells and promote the apoptosis of hepatoma cells. This study successfully produced nanoparticles loaded with doxorubicin targeting EGFR, which has a good sustained release effect, and its antitumor effect is stronger than free doxorubicin.


Author(s):  
GEETHA V. S. ◽  
MALARKODI VELRAJ

Objective: To formulate, optimize and evaluate 5-fluorouracil loaded liquorice crude protein nanoparticles for sustained drug delivery using Box-Behnken design. Methods: 5-fluorouracil (5-FU) loaded liquorice crude protein (LCP) nanoparticles were prepared by desolvation method using ethanol-water (1:2 ratio), Tween-80 (2%v/v) as stabilizing agent and gluteraldehyde (8% v/v) as cross linking agent. The optimization of prepared nanoparticles was carried out using Box-Behnken design with 3 factors 2 levels and 3 responses. The independent variables were A)5-FU concentration B)LCP concentration and C) sonication time while the responses were R1) Drug entrapment efficiency R2) Drug loading efficiency and R3) Particle size. The correlation between factors and responses were studied through response surface plots and mathematical equations. The nanoparticles were evaluated for FTIR, physicochemical properties like particle size and zeta potential by Photon correlation spectroscopy (PCS) and surface morphology by TEM. The entrapment efficiency, drug loading efficiency and in vitro drug release studies in PBS pH 7.4 (24 h) were carried out. The observed values were found to be in close agreement with the predicted value obtained from the optimization process. Results: 5-fluorouracil loaded LCP nanoparticles were prepared by desolvation method, the optimization was carried out by Box-Behnken design and the final formulation was evaluated for particle size (301.1 nm), zeta-potential (-25.8mV), PDI(0.226), with entrapment efficiency (64.07%), drug loading efficiency (28.54%), in vitro drug release (65.2% in 24 h) respectively. The formulated nanoparticles show Higuchi model drug release kinetics with sustained drug delivery for 24 h in pH7.4 buffer. Conclusion: The results were proved to be the most valuable for the sustained delivery of 5-Fluorouracil using liquorice crude protein as carrier. 5-FU–LCP nanoparticles were prepared using Tween-80 as stabilizing agent and gluteraldehyde as cross-linking agent to possess ideal sustained drug release characteristics.


Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


2016 ◽  
Vol 4 (18) ◽  
pp. 3019-3030 ◽  
Author(s):  
Yi Zhao ◽  
Ana C. Tavares ◽  
Marc A. Gauthier

Nano-engineering is exploited to address the slow drug release and low drug loading of electro-responsive drug delivery systems.


2021 ◽  
Vol 13 (9) ◽  
pp. 1691-1698
Author(s):  
Hongzhe Liu ◽  
Kai Tong ◽  
Ziyi Zhong ◽  
Gang Wang

To explore the effect of hydrogen sulfide (H2S) drug-loaded nanoparticles (H2S-NPs) on the mTOR/STAT3 signaling pathway in rats and its mechanism on repair of spinal cord injury (SCI), a new H2S-NP (G16MPG-ADT) was prepared and synthesized. The rats were selected as the research objects to explore the mechanism of SCI repair. The G16MPG-ADT NPs were evaluated by average particle size (APS), dispersion coefficient (DC), drug loading content (DLC), drug loading efficacy (DLE), in vitro release (IV-R), and acute toxicity (AT). It was found that G16MPG-ADT nanoparticles had a uniform particle size distribution with a unimodal distribution, with an average particle size of 186.5 nm and a dispersion coefficient of 0.129; within the concentration range of 8~56 μg/L, there was a good linear relationship with the peak area; and the release rate of the nanoparticles within 16 h~32 h was higher than 50%. G16MPG-ADT NP injection treatment was performed on rats with SCI. Western blotting (WB) and immunofluorescence staining were adopted to analyze the expression levels of mammalian target of rapamycin (mTOR) and signal transducers and activators of transcription (STAT3) protein and the growth of neurites. It was found that G16MPG-ADT can increase mTOR and STAT3 protein levels and promote nerve growth after SCI. Finally, the Basso, Beattie and Bresnahan locomotor rating (BBB) score was to evaluate the recovery effect of rats after treatment. It was found that the recovery effect was excellent after G16MPG-ADT treatment. In summary, G16MPG-ADT has a good effect on SCI repair in rats and can be promoted in the clinic.


2005 ◽  
Vol 04 (05n06) ◽  
pp. 855-861 ◽  
Author(s):  
MARTIN GARNETT

The use of nanosized materials changes the way in which drugs are handled by the body and offers opportunities to improve drug delivery. The physiological mechanisms controlling the distribution of nanosized materials (enhanced permeability and retention effect, cellular uptake pathways and opsonisation/elimination of nanoparticles) are described. Two different nanosized drug delivery systems are considered; drug delivery and DNA delivery. The deficiencies of currently available biodegradable polymers for preparation of drug containing nanoparticles are mainly the amount of drug that can be incorporated and the rapid rate of drug release. The development of new biodegradable polymers which can interact with the drug and so significantly increase drug loading and decrease the rate of drug release are outlined. DNA delivery necessitates overcoming a variety of biological barriers. We are developing polyelectrolyte complexes of DNA with cationic polyamidoamines (PAA) as a delivery system. Complexing PAA with DNA results in good transfection of cells in vitro. However, in vivo, a more complex arrangement of PAA, Polyethylene glycol-PAA copolymers, DNA and the use of ligands will be required. Despite these efforts, further developments will be needed in nanotechnology for both drug and DNA nanoparticle delivery systems to achieve our clinical objectives.


Author(s):  
SOBITHARANI P ◽  
ANANDAM S ◽  
MOHAN VARMA M ◽  
VIJAYA RATNA J ◽  
SHAILAJA P

Objective: The main objective of this study was to investigate the release pattern of a poorly water-soluble drug quercetin (QU) by fabricating its cyclodextrin nanosponges. Methods: Characterization of the original QU powder and QU-loaded nanosponges was carried out by the Fourier-transformed infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dissolution tester. The drug release pattern was subjected to various kinetic models. Results: FTIR studies confirmed the formation of inclusion complex of drug. The particle size analysis revealed that the average particle size measured by laser light scattering method is around 400–420 nm with low polydispersity index. The particle size distribution is unimodal and having a narrow range. A sufficiently high zeta potential indicates that the complexes would be stable and the tendency to agglomerate would be miniscule. TEM image revealed the porous nature of nanosponges. The dissolution of the QU nanosponges was significantly higher compared with the pure drug. Conclusion: From the kinetic study, it is apparent that the regression coefficient value closer to unity in case of Korsmeyer-Peppas model indicates that the drug release exponentially to the elapsed time. n value obtained from the Korsmeyer-Peppas plots, i.e., 0.9911 indicating non-Fickian (anomalous) transport ; thus, it projected that delivered its active ingredient by coupled diffusion and erosion.


Author(s):  
Nilesh S. Kulkarni ◽  
Mukta A. Kulkarni ◽  
Rahul H. Khiste ◽  
Mohini C. Upadhye ◽  
Shashikant N. Dhole

Aim: The present investigation is to formulate and evaluate gastroretentive floating microspheres for sumatriptan succinate. Gastric retention is widely used approach to retain dosage form in stomach and to enhance absorption of drugs. Methods: The gastroretentive floating microspheres was prepared by two different techniques as solvent evaporation and W/O/W multiple emulsion technique. Ethyl cellulose, HPMC K4M polymer and mucilage extracted from Vigna Mungo in various proportions were used for formulation of microspheres. Combination of ethyl acetate and acetone in different proportion was used as organic phase and the microspheres were characterized for particle size, shape, morphology, percentage yield, entrapment efficiency, drug loading, In-Vitro Floating/Buoyancy study, In-vitro Floating/Buoyancy study and release kinetics. Results: The average particle size of all batches was found in the range 100 to 210 μm and the entrapment efficiency of all formulations was found in the range of 17.46 % to 59.28 %.Total floating time for Sumatriptan succinate floating microspheres was observed more than 12 h. The In-Vitro drug release study was performed for all formulations showed drug release in controlled manner. Conclusion: The particle size was increased with increased polymer concentration and it showed that polymer concentration has an impact on the entrapment efficiency. Ethyl cellulose microspheres showed more entrapment and sustained delivery of sumatriptan Succinate than microspheres prepared by combination of Ethyl cellulose: HPMC K4M and Ethyl cellulose: Vigna mungo mucilage.


Sign in / Sign up

Export Citation Format

Share Document