Effect of Pin-Fin Heat Sink Structure and Irradiation Angle on High-Power LED Down-Light Thermal Performance

2012 ◽  
Vol 591-593 ◽  
pp. 653-656
Author(s):  
Hai Lin Liu ◽  
Li Gang Wu ◽  
Shi Xun Dai ◽  
Wan Jiong Lin ◽  
Bo You Zhou ◽  
...  

The heat sink has played an important role in the thermal design of high power LED lamps. In this study, a pin-fin heat sink is designed for the 3-chips high power LED down-light. Thermal performance of pin-fin heat sink is researched by changing the fin height, fin number and lamp’s irradiation angle. Simulation results gotten by CFD software show that the pin-fin heat sink has better thermal performance with fin height of 40mm and fin number of 75. The LED down-light with a pin-fin heat sink has a better cooling effect in multi-angle irradiation. The results provide a reference for future design of pin-fin heat-sink.

Author(s):  
H. Y. Zhang ◽  
Xiao Yan ◽  
W. H. Zhu ◽  
Leon Lin

2.5-D package with through silicon vias (TSVs) on interposer has been envisioned as the most viable way in heterogeneous integration. In this work, several design approaches are considered in the thermal analysis and enhancements of a 2.5-D package with multi chips on through silicon interposer (TSI), which include overmolding materials, metal slug, lid attachment, pin fin heat sink and fan-driven heat sink cooling. The analysis models consist of two dummy flip chips on a silicon interposer to represent the logic die and memory die, respectively. Package submodels, especially the TSV ones, are analyzed with good modeling accuracy. Package thermal modeling indicates that the thermal conductivity of the epoxy overmolding has minimal effect on the thermal performance of copper slug package. Lid attachment further enhances the thermal performance through peripheral substrate attachment. Both designs largely rely on thermally conductive PCB (4L) to maximize power dissipation. Pin-fin heat sink, made of aluminum, can be mounted on the package top to further minimize thermal resistance and extend the power dissipation beyond 10W. For high power application, fan cooled heat sink is used to reduce excessive heat. Copper based aluminum heat sink can remove the heat of 120W from the bare-die package. Self heating due to high current density through the TSV is analyzed. The proposed analytical expression gives good prediction on the local TSV hot spot. It is demonstrated that a distributed TSV network design provides lower temperature rise, which shall have lower risk of failures and is preferred in practice.


2014 ◽  
Vol 1082 ◽  
pp. 332-335
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Hussin Kamarudin ◽  
Muammar Mohamad Isa ◽  
Gan Meng Kuan

In this paper, the heat distribution for single chip high power LED package attached with varied heat sink fin shapes were analyzed through simulation. The main focus of this study was to scrutinize the fluctuation of junction temperature with different shapes of heat sink fin designs. The simulation was done using Ansys version 11. The single chip LED was loaded with input power of 0.5 W and 1 W . Simulation was done at ambient temperature of 25°C under three convection coefficient of 5, 10 and 15 W/m2.oC respectively. The obtained results showed that the LED package with pyramid pin fin heat sink has demonstrated a better thermal performance compared to the LED package with cylindrical pin fin heat sink.


2011 ◽  
Vol 308-310 ◽  
pp. 346-350 ◽  
Author(s):  
Xiang Jun Ma ◽  
Li Gang Wu ◽  
Shi Xun Dai ◽  
Bo You Zhou ◽  
Kun Bai ◽  
...  

Heat dissipation of high-power LED lamps has become a key technology to LED package due to the improvement of the LED output power. A detailed simulation of temperature distribution of three chips high-power LED tube lamp was made by finite element method. Based on the consistency of the LED lamp experimental and simulation results, the analyses of the effect of thermal conductivities of PCB, thermal grease, heat sink, convection coefficients and the length of the lamp on the junction temperature were made, which provide an effective reference for the thermal design.


2014 ◽  
Vol 602-605 ◽  
pp. 2713-2716 ◽  
Author(s):  
Xin Rui Ding ◽  
Yu Ji Li ◽  
Zong Tao Li ◽  
Yong Tang ◽  
Bin Hai Yu ◽  
...  

LED has been regarded as the next generation lighting source. As for high power LED lamps, heat accumulation will cause a series of problems. Therefore, thermal management is very important for designing a high power LED lamp. Three types of heat sinks are designed by using the finite element analysis (FEA) method for an 180W high power LED lamp. Then the optimized heat sinks are developed and experiments are performed to demonstrate the simulated results. At the same time, the thermal performances with different working angles are investigated experimentally. The heat sink with heat pipe has a better heat dissipation performance than the conventional heat sink under the same input power. The working angles of the lamps greatly influence the thermal performance of each heat sink. For the same heat sink, the temperature varies with different install directions and working angles. Finally, the heat sink with the best thermal performance is recommended. The results have practical significance in designing high power LED lamps.


Author(s):  
Sangmesh ◽  
◽  
Gopalakrishna Keshava Narayana ◽  
Manjunath Shiraganhalli Honnaiah ◽  
Krishna Venkatesh ◽  
...  

2011 ◽  
Vol 80-81 ◽  
pp. 767-773
Author(s):  
Hai Gang Sun ◽  
Yong Zhou

Thermal design and the working temperature control have been a key factor in the design of electronic devices and system. In this paper, a sort of heat sink collocated with high-power IGBT module, which is commonly used in car-carrying motor control system, is designed based on thermal analysis by means of CFD simulation and computer-aided analyzing, also the influence relations of structure parameters with thermal performance are studied. With thermal control as the overall design objective, structure parameters of heat sink are determined according to the obtained relations. Further, thermal performance of the designed heat sink is simulated and analyzed in CFD software to examine the validity of the design result. In this way, a method of thermal analyzing and structure parameter design for heat sink, which is proved as an efficacious approach, is introduced and can be used to thermal design and analysis for similar products.


Sign in / Sign up

Export Citation Format

Share Document