Mechanism Movement Reliability Analysis of Galting Gun

2012 ◽  
Vol 605-607 ◽  
pp. 802-805
Author(s):  
Xiao Ming Han ◽  
Yu Cheng Bo ◽  
Qiang Li ◽  
Yun Jian Guo

In order to improve mechanism movement reliability of galting gun, through analyzing functions at different periods of mechanism movement course and basing on reliability, mechanism kinematics and movement error analysis theory, design variables which affect mechanism movement reliability are sampled according to distribution law. Using VC++ development environment and MFC class library’s supporting and putting parametric model into ADAMS software, mechanism movement characteristic at different design parameters is emulation calculated. According to emulation results mechanism movement reliability is estimated and all design parameters’ sensibility is analyzed, which realizes mechanism movement reliability analysis based on parametric model and provides a useful exploration for galting gun’s reliability design.

Author(s):  
Ameya K. Naik ◽  
Raghunath S. Holambe

An outline is presented for construction of wavelet filters with compact support. Our approach does not require any extensive simulations for obtaining the values of design variables like other methods. A unified framework is proposed for designing halfband polynomials with varying vanishing moments. Optimum filter pairs can then be generated by factorization of the halfband polynomial. Although these optimum wavelets have characteristics close to that of CDF 9/7 (Cohen-Daubechies-Feauveau), a compact support may not be guaranteed. Subsequently, we show that by proper choice of design parameters finite wordlength wavelet construction can be achieved. These hardware friendly wavelets are analyzed for their possible applications in image compression and feature extraction. Simulation results show that the designed wavelets give better performances as compared to standard wavelets. Moreover, the designed wavelets can be implemented with significantly reduced hardware as compared to the existing wavelets.


Author(s):  
Sayed M. Metwalli ◽  
M. Alaa Radwan ◽  
Abdel Aziz M. Elmeligy

Abstract The convensional procedure of helical torsion spring design is an iterative process because of large number of requirements and relations that are to be attained once at a time. The design parameters are varied at random until the spring design satisfies performance requirements. A CAD of the spring for minimum weight is formulated with and without the variation of the maximum normal stress with the wire diameter. The CAD program solves by employing the method of Lagrange-Multipliers. The optimal parameters, in a closed form are obtained, normalized and plotted. These explicit relations of design variables allow direct evaluation of optimal design objective and hence, an absolute optimum could be achieved. The comparison of optimum results with those previously published, shows a pronounced achievement in the reduction of torsion spring weight.


Author(s):  
Masao Arakawa ◽  
Hiroshi Yamakawa

Abstract In this study, we summerize the method of fuzzy optimization using fuzzy numbers as design variables. In order to detect flaw in fuzzy calculation, we use LR-fuzzy numbers, which is known as its simplicity in calculation. We also use simple fuzzy numbers’ operations, which was proposed in the previous papers. The proposed method has unique characteristics that we can obtain fuzzy sets in design variables (results of the design) directly from single numerical optimizing process. Which takes a large number of numerical optimizing processes when we try to obtain similar results in the conventional methods. In the numerical examples, we compare the proposed method with several other methods taking imprecision in design parameters into account, and demonstrate the effectiveness of the proposed method.


Author(s):  
Shilpa A. Vaze ◽  
Prakash Krishnaswami ◽  
James DeVault

Most state-of-the-art multibody systems are multidisciplinary and encompass a wide range of components from various domains such as electrical, mechanical, hydraulic, pneumatic, etc. The design considerations and design parameters of the system can come from any of these domains or from a combination of these domains. In order to perform analytical design sensitivity analysis on a multidisciplinary system (MDS), we first need a uniform modeling approach for this class of systems to obtain a unified mathematical model of the system. Based on this model, we can derive a unified formulation for design sensitivity analysis. In this paper, we present a modeling and design sensitivity formulation for MDS that has been successfully implemented in the MIXEDMODELS (Multidisciplinary Integrated eXtensible Engine for Driving Metamodeling, Optimization and DEsign of Large-scale Systems) platform. MIXEDMODELS is a unified analysis and design tool for MDS that is based on a procedural, symbolic-numeric architecture. This architecture allows any engineer to add components in his/her domain of expertise to the platform in a modular fashion. The symbolic engine in the MIXEDMODELS platform synthesizes the system governing equations as a unified set of non-linear differential-algebraic equations (DAE’s). These equations can then be differentiated with respect to design to obtain an additional set of DAE’s in the sensitivity coefficients of the system state variables with respect to the system’s design variables. This combined set of DAE’s can be solved numerically to obtain the solution for the state variables and state sensitivity coefficients of the system. Finally, knowing the system performance functions, we can calculate the design sensitivity coefficients of these performance functions by using the values of the state variables and state sensitivity coefficients obtained from the DAE’s. In this work we use the direct differentiation approach for sensitivity analysis, as opposed to the adjoint variable approach, for ease in error control and software implementation. The capabilities and performance of the proposed design sensitivity analysis formulation are demonstrated through a numerical example consisting of an AC rectified DC power supply driving a slider crank mechanism. In this case, the performance functions and design variables come from both electrical and mechanical domains. The results obtained were verified by perturbation analysis, and the method was shown to be very accurate and computationally viable.


2011 ◽  
Vol 347-353 ◽  
pp. 631-634
Author(s):  
Qin Liang Tan ◽  
Cai Juan Zhang ◽  
Xiao Ying Hu ◽  
Li Gang Wang ◽  
Qiang Lu ◽  
...  

Biomass direct combustion power generation is the most simple but effective way in dealing with environmental issues and energy crisis. A comprehensive diagnosis with accurate evaluation of energy saving potential of a given biomass power plant is of great importance in lowing the cost of generating electricity, reducing the consumption of energy and pollutant emissions [1]. This paper throws light upon an innovative energy consumption diagnosis method-the specific consumption analysis theory, which is based on the First and Second law of thermodynamics [2,3]. Taking a given biomass power plant of National Energy Group as an example, mathematical models are made based on all the components and processes. The specific consumption analysis theory is employed to calculate the specific consumption within the biomass power plant using design parameters under design operating conditions, thus demonstrating the specific consumption distribution in the power plant, which provides theoretical basis for energy-saving and optimization in biomass power plant.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1374-1380
Author(s):  
Jong Yun Jang ◽  
Chong Sun Lee ◽  
Chang Min Suh

The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.


2020 ◽  
Vol 40 (5) ◽  
pp. 703-721
Author(s):  
Golak Bihari Mahanta ◽  
Deepak BBVL ◽  
Bibhuti B. Biswal ◽  
Amruta Rout

Purpose From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable nature and its economic feasibility. So, the purpose of this paperis to design a suitable gripper with appropriate design parameters for better performance in the robotic production systems. Design/methodology/approach In this paper, an enhanced multi-objective ant lion algorithm is introduced to find the optimal geometric and design variables of a parallel gripper. The considered robotic gripper systems are evaluated by considering three objective functions while satisfying eight constraint equations. The beta distribution function is introduced for generating the initial random number at the initialization phase of the proposed algorithm as a replacement of uniform distribution function. A local search algorithm, namely, achievement scalarizing function with multi-criteria decision-making technique and beta distribution are used to enhance the existing optimizer to evaluate the optimal gripper design problem. In this study, the newly proposed enhanced optimizer to obtain the optimum design condition of the design variables is called enhanced multi-objective ant lion optimizer. Findings This study aims to obtain optimal design parameters of the parallel gripper with the help of the developed algorithms. The acquired results are investigated with the past research paper conducted in that field for comparison. It is observed that the suggested method to get the best gripper arrangement and variables of the parallel gripper mechanism outperform its counterparts. The effects of the design variables are needed to be studied for a better design approach concerning the objective functions, which is achieved by sensitivity analysis. Practical implications The developed gripper is feasible to use in the assembly operation, as well as in other pick and place operations in different industries. Originality/value In this study, the problem to find the optimum design parameter (i.e. geometric parameters such as length of the link and parallel gripper joint angles) is addressed as a multi-objective optimization. The obtained results from the execution of the algorithm are evaluated using the performance indicator algorithm and a sensitivity analysis is introduced to validate the effects of the design variables. The obtained optimal parameters are used to develop a gripper prototype, which will be used for the assembly process.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3154
Author(s):  
Md Mohosin Rana ◽  
Hector De la Hoz Siegler

Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xue-Qin Li ◽  
Lu-Kai Song ◽  
Guang-Chen Bai

PurposeTo provide valuable information for scholars to grasp the current situations, hotspots and future development trends of reliability analysis area.Design/methodology/approachIn this paper, recent researches on efficient reliability analysis and applications in complex engineering structures like aeroengine rotor systems are reviewd.FindingsThe recent reliability analysis advances of engineering application in aeroengine rotor system are highlighted, it is worth pointing out that the surrogate model methods hold great efficiency and accuracy advantages in the complex reliability analysis of aeroengine rotor system, since its strong computing power can effectively reduce the analysis time consumption and accelerate the development procedures of aeroengine. Moreover, considering the multi-objective, multi-disciplinary, high-dimensionality and time-varying problems are the common problems in various complex engineering fields, the surrogate model methods and its developed methods also have broad application prospects in the future.Originality/valueFor the strong demand for efficient reliability design technique, this review paper may help to highlights the benefits of reliability analysis methods not only in academia but also in practical engineering application like aeroengine rotor system.


Sign in / Sign up

Export Citation Format

Share Document