Optimal design of a parallel robotic gripper using enhanced multi-objective ant lion optimizer with a sensitivity analysis approach

2020 ◽  
Vol 40 (5) ◽  
pp. 703-721
Author(s):  
Golak Bihari Mahanta ◽  
Deepak BBVL ◽  
Bibhuti B. Biswal ◽  
Amruta Rout

Purpose From the past few decades, parallel grippers are used successfully in the automation industries for performing various pick and place jobs due to their simple design, reliable nature and its economic feasibility. So, the purpose of this paperis to design a suitable gripper with appropriate design parameters for better performance in the robotic production systems. Design/methodology/approach In this paper, an enhanced multi-objective ant lion algorithm is introduced to find the optimal geometric and design variables of a parallel gripper. The considered robotic gripper systems are evaluated by considering three objective functions while satisfying eight constraint equations. The beta distribution function is introduced for generating the initial random number at the initialization phase of the proposed algorithm as a replacement of uniform distribution function. A local search algorithm, namely, achievement scalarizing function with multi-criteria decision-making technique and beta distribution are used to enhance the existing optimizer to evaluate the optimal gripper design problem. In this study, the newly proposed enhanced optimizer to obtain the optimum design condition of the design variables is called enhanced multi-objective ant lion optimizer. Findings This study aims to obtain optimal design parameters of the parallel gripper with the help of the developed algorithms. The acquired results are investigated with the past research paper conducted in that field for comparison. It is observed that the suggested method to get the best gripper arrangement and variables of the parallel gripper mechanism outperform its counterparts. The effects of the design variables are needed to be studied for a better design approach concerning the objective functions, which is achieved by sensitivity analysis. Practical implications The developed gripper is feasible to use in the assembly operation, as well as in other pick and place operations in different industries. Originality/value In this study, the problem to find the optimum design parameter (i.e. geometric parameters such as length of the link and parallel gripper joint angles) is addressed as a multi-objective optimization. The obtained results from the execution of the algorithm are evaluated using the performance indicator algorithm and a sensitivity analysis is introduced to validate the effects of the design variables. The obtained optimal parameters are used to develop a gripper prototype, which will be used for the assembly process.

Author(s):  
Sajjad Mohammadi ◽  
Behrooz Vahidi ◽  
Mojtaba Mirsalim ◽  
Hamid Lesani

Purpose – The purpose of this paper is to develop an effective, yet simple analytical framework for optimization of permanent-magnet synchronous machines. Also, single/multi-objective optimizations are performed for a case-study machine with surface-mounted permanent magnets. Design/methodology/approach – First, an accurate magnetic equivalent circuit is developed which takes all the material such as iron saturation and PM parameters into account. Then, through a Fourier analysis, it is combined with the d-q model of PM synchronous machines to achieve an optimization framework including the developed torque, back-EMF and a number of design considerations. Finally, a genetic algorithm (GA) is employed in the single/multi-objective design optimizations, which offers several design characteristics upon different desired outcomes. Findings – An analytical design framework for the optimization of permanent-magnet synchronous machines is developed in this paper that can effectively account for all material properties such as iron saturation and PM characteristics, and take into account the design considerations, all of which are shown as superiorities of the proposed approach over the existing method. In addition, the proposed framework is relatively simpler in terms of implementing. The model is verified by employing finite element method. Moreover, sensitivity analysis is carried out to investigate the influence of the design parameters on the machine performance, which provides valuable information for the designer of such devices. Finally, a GA is utilized to perform single/multi-objective optimization schemes whose objectives are minimizing the torque ripples, back-EMF total harmonic distortion and PM volume. Originality/value – The proposed framework is new approach that could be employed in the design optimization of PM synchronous machines. Contrary to existing method, it is simpler and more effective in taking the material properties such as iron saturation and PM characteristics into account.


2006 ◽  
Vol 34 (3) ◽  
pp. 170-194 ◽  
Author(s):  
M. Koishi ◽  
Z. Shida

Abstract Since tires carry out many functions and many of them have tradeoffs, it is important to find the combination of design variables that satisfy well-balanced performance in conceptual design stage. To find a good design of tires is to solve the multi-objective design problems, i.e., inverse problems. However, due to the lack of suitable solution techniques, such problems are converted into a single-objective optimization problem before being solved. Therefore, it is difficult to find the Pareto solutions of multi-objective design problems of tires. Recently, multi-objective evolutionary algorithms have become popular in many fields to find the Pareto solutions. In this paper, we propose a design procedure to solve multi-objective design problems as the comprehensive solver of inverse problems. At first, a multi-objective genetic algorithm (MOGA) is employed to find the Pareto solutions of tire performance, which are in multi-dimensional space of objective functions. Response surface method is also used to evaluate objective functions in the optimization process and can reduce CPU time dramatically. In addition, a self-organizing map (SOM) proposed by Kohonen is used to map Pareto solutions from high-dimensional objective space onto two-dimensional space. Using SOM, design engineers see easily the Pareto solutions of tire performance and can find suitable design plans. The SOM can be considered as an inverse function that defines the relation between Pareto solutions and design variables. To demonstrate the procedure, tire tread design is conducted. The objective of design is to improve uneven wear and wear life for both the front tire and the rear tire of a passenger car. Wear performance is evaluated by finite element analysis (FEA). Response surface is obtained by the design of experiments and FEA. Using both MOGA and SOM, we obtain a map of Pareto solutions. We can find suitable design plans that satisfy well-balanced performance on the map called “multi-performance map.” It helps tire design engineers to make their decision in conceptual design stage.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ramazan Özkan ◽  
Mustafa Serdar Genç

Purpose Wind turbines are one of the best candidates to solve the problem of increasing energy demand in the world. The aim of this paper is to apply a multi-objective structural optimization study to a Phase II wind turbine blade produced by the National Renewable Energy Laboratory to obtain a more efficient small-scale wind turbine. Design/methodology/approach To solve this structural optimization problem, a new Non-Dominated Sorting Genetic Algorithm (NSGA-II) was performed. In the optimization study, the objective function was on minimization of mass and cost of the blade, and design parameters were composite material type and spar cap layer number. Design constraints were deformation, strain, stress, natural frequency and failure criteria. ANSYS Composite PrepPost (ACP) module was used to model the composite materials of the blade. Moreover, fluid–structure interaction (FSI) model in ANSYS was used to carry out flow and structural analysis on the blade. Findings As a result, a new original blade was designed using the multi-objective structural optimization study which has been adapted for aerodynamic optimization, the NSGA-II algorithm and FSI. The mass of three selected optimized blades using carbon composite decreased as much as 6.6%, 11.9% and 14.3%, respectively, while their costs increased by 23.1%, 29.9% and 38.3%. This multi-objective structural optimization-based study indicates that the composite configuration of the blade could be altered to reach the desired weight and cost for production. Originality/value ACP module is a novel and advanced composite modeling technique. This study is a novel study to present the NSGA-II algorithm, which has been adapted for aerodynamic optimization, together with the FSI. Unlike other studies, complex composite layup, fiber directions and layer orientations were defined by using the ACP module, and the composite blade analyzed both aerodynamic pressure and structural design using ACP and FSI modules together.


Author(s):  
Shilpa A. Vaze ◽  
Prakash Krishnaswami ◽  
James DeVault

Most state-of-the-art multibody systems are multidisciplinary and encompass a wide range of components from various domains such as electrical, mechanical, hydraulic, pneumatic, etc. The design considerations and design parameters of the system can come from any of these domains or from a combination of these domains. In order to perform analytical design sensitivity analysis on a multidisciplinary system (MDS), we first need a uniform modeling approach for this class of systems to obtain a unified mathematical model of the system. Based on this model, we can derive a unified formulation for design sensitivity analysis. In this paper, we present a modeling and design sensitivity formulation for MDS that has been successfully implemented in the MIXEDMODELS (Multidisciplinary Integrated eXtensible Engine for Driving Metamodeling, Optimization and DEsign of Large-scale Systems) platform. MIXEDMODELS is a unified analysis and design tool for MDS that is based on a procedural, symbolic-numeric architecture. This architecture allows any engineer to add components in his/her domain of expertise to the platform in a modular fashion. The symbolic engine in the MIXEDMODELS platform synthesizes the system governing equations as a unified set of non-linear differential-algebraic equations (DAE’s). These equations can then be differentiated with respect to design to obtain an additional set of DAE’s in the sensitivity coefficients of the system state variables with respect to the system’s design variables. This combined set of DAE’s can be solved numerically to obtain the solution for the state variables and state sensitivity coefficients of the system. Finally, knowing the system performance functions, we can calculate the design sensitivity coefficients of these performance functions by using the values of the state variables and state sensitivity coefficients obtained from the DAE’s. In this work we use the direct differentiation approach for sensitivity analysis, as opposed to the adjoint variable approach, for ease in error control and software implementation. The capabilities and performance of the proposed design sensitivity analysis formulation are demonstrated through a numerical example consisting of an AC rectified DC power supply driving a slider crank mechanism. In this case, the performance functions and design variables come from both electrical and mechanical domains. The results obtained were verified by perturbation analysis, and the method was shown to be very accurate and computationally viable.


2014 ◽  
Vol 984-985 ◽  
pp. 419-424
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Saravanan

Arriving optimal solutions is one of the important tasks in engineering design. Many real-world design optimization problems involve multiple conflicting objectives. The design variables are of continuous or discrete in nature. In general, for solving Multi Objective Optimization methods weight method is preferred. In this method, all the objective functions are converted into a single objective function by assigning suitable weights to each objective functions. The main drawback lies in the selection of proper weights. Recently, evolutionary algorithms are used to find the nondominated optimal solutions called as Pareto optimal front in a single run. In recent years, Non-dominated Sorting Genetic Algorithm II (NSGA-II) finds increasing applications in solving multi objective problems comprising of conflicting objectives because of low computational requirements, elitism and parameter-less sharing approach. In this work, we propose a methodology which integrates NSGA-II and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for solving a two bar truss problem. NSGA-II searches for the Pareto set where two bar truss is evaluated in terms of minimizing the weight of the truss and minimizing the total displacement of the joint under the given load. Subsequently, TOPSIS selects the best compromise solution.


Author(s):  
Yumiko Takayama ◽  
Hiroyoshi Watanabe

In most cases of high specific speed mixed-flow pump applications, it is necessary to satisfy more than one performance characteristic such as deign point efficiency, shut-off power/head and non-stall characteristic (no positive slope in flow-head curve). However, it is known that these performance characteristics are in relation of trade-offs. As a result, it is difficult to optimize these performance characteristics by conventional way such as trial and error approach by modifying geometrical parameters. This paper presents the results of the multi-objective optimization strategy of mixed-flow pump design by means of three dimensional inverse design approach, Computational Fluid Dynamics (CFD), Design of Experiments (DoE), response surface model (RSM) and Multi Objective Genetic Algorism (MOGA). The parameters to control blade loading distributions and meridional geometries for impeller and diffuser blades in inverse design were chosen as design variables of the optimization process. Pump efficiency, maximum slope in flow-head curve and shut-off power/head were selected as objective functions. Objective functions of pumps, designed by design variables specified in DoE, were evaluated by using CFD. Then, trade-off relations between objective functions were analyzed by using Pareto fronts obtained by MOGA. Some pumps which have specific performance characteristic (non-stall, low shut-off power, high efficiency etc.) designed along the Pareto front were numerically evaluated.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jianzhong Cui ◽  
Hu Li ◽  
Dong Zhang ◽  
Yawen Xu ◽  
Fangwei Xie

Purpose The purpose of this study is to investigate the flexible dynamic characteristics about hydro-viscous drive providing meaningful insights into the credible speed-regulating behavior during the soft-start. Design/methodology/approach A comprehensive dynamic transmission model is proposed to investigate the effects of key parameters on the dynamic characteristics. To achieve a trade-off between the transmission efficiency and time proportion of hydrodynamic and mixed lubrication, a multi-objective optimization of friction pair system by genetic algorithm is presented to obtain the optimal combination of design parameters. Findings Decreasing the engagement pressure or the ratio of inner and outer radius, increasing the lubricating oil viscosity or the outer radius will result in the increase of time proportion of hydrodynamic and mixed lubrication, as well as the transmission efficiency and its maximum value. After optimization, main dynamic parameters including the oil film thickness, angular velocity of the driven disk, viscous torque and total torque show remarkable flexible transmission characteristics. Originality/value Both the dynamic transmission model and multi-objective optimization model are established to analyze the effects of main design parameters on the dynamic characteristics of hydro-viscous flexible drive.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 554
Author(s):  
Huiping Ji ◽  
Gonghuan Fang ◽  
Jing Yang ◽  
Yaning Chen

Understanding glacio-hydrological processes is crucial to water resources management, especially under increasing global warming. However, data scarcity makes it challenging to quantify the contribution of glacial melt to streamflow in highly glacierized catchments such as those in the Tienshan Mountains. This study aims to investigate the glacio-hydrological processes in the SaryDjaz-Kumaric River (SDKR) basin in Central Asia by integrating a degree-day glacier melt algorithm into the macro-scale hydrological Soil and Water Assessment Tool (SWAT) model. To deal with data scarcity in the alpine area, a multi-objective sensitivity analysis and a multi-objective calibration procedure were used to take advantage of all aspects of streamflow. Three objective functions, i.e., the Nash–Sutcliffe efficiency coefficient of logarithms (LogNS), the water balance index (WBI), and the mean absolute relative difference (MARD), were considered. Results show that glacier and snow melt-related parameters are generally sensitive to all three objective functions. Compared to the original SWAT model, simulations with a glacier module match fairly well to the observed streamflow, with the Nash–Sutcliffe efficiency coefficient (NS) and R2 approaching 0.82 and an absolute percentage bias less than 1%. Glacier melt contribution to runoff is 30–48% during the simulation period. The approach of combining multi-objective sensitivity analysis and optimization is an efficient way to identify important hydrological processes and recharge characteristics in highly glacierized catchments.


Author(s):  
Yuan Mao Huang ◽  
Bi Shyang Hu

Abstract Many design parameters affect the performance of continuous variable transmissions. This paper presents the optimization of a continuous variable transmission by using the simulated annealing algorithm. The Bessel method of curve fitting and the tensor product method of surface fitting were used to facilitate the discrete fuel consumption, emissions of carbon monoxide (CO) and HC compound of experimental engine data. A compromise method was used to analyze the multi-objective functions. The values for design variables are recommended for further development.


Author(s):  
Eiji Adachi

Abstract Actual product designs aim to fulfill all product requirements of market needs and wants, which are technical or non-technical, logical or illogical, objective or subjective, and quantitative or qualitative. The actual product designs are objective-aiming designs and can be supposed to be multi-objective satisfactory designs with heterogeneous objective functions and dimensional design variables. To realize computer-aided product designs which can obtain rational and satisfactory solutions, we classify the objective functions and contrive methods to deal with non-theoretical, non-technical, subjective, or illogical objective functions as well. This paper shows all of our methods, including an expression of heterogeneous objective functions which consists of objective and evaluated values, a satisfactory design method by simultaneous equations which searches solutions sequentially, identification methods of non-theoretical or non-technical objective functions and sensitivity coefficients for the simultaneous equations, a decision-making method of promising solutions to fulfill product requirements, and also numerical applications of these methods to actual product designs.


Sign in / Sign up

Export Citation Format

Share Document