Research on Similar Material in Physical Specimen Petrography of Rock

2012 ◽  
Vol 616-618 ◽  
pp. 346-349 ◽  
Author(s):  
Yan Hua Guo ◽  
Rui Jun Cao ◽  
Li Hua Zhu

The similar material composed of quartz sand, gypsum, colophony and alcohol solution, model test and similarity theory were depended on in the test, and standard cylinder specimens were made in different proportions. The physical and mechanical properties of blocks were studied through uniaxial compressive experiments. The researches show that the ratio of elastic modulus and down modulus of the specimens increase linearly with the increase of the ratio of sand and cement; while the elastic modulus, the down modulus and the uniaxial compressive strength decrease in shah model of index function with the increase of it. All parameters mentioned above reduce rapidly with the increase of the ratio of sand and cement when the ratio of sand and cement less than 4, if not, the parameters increase slowly.

2013 ◽  
Vol 850-851 ◽  
pp. 847-850 ◽  
Author(s):  
Lin Chao Dai

In order to study the coal and gas outburst similar simulation experiment, coal similar material was made up based on the similarity theory. Based on the previous similar material study, the cement, sand, water, activated carbon and coal powder was selected as the raw material of similar material. Meanwhile similar material matching program with 5 factors and 6 levels was designed by using Uniform Design Method. And the physical and mechanical properties of the similar material compressive strength was measured under different proportions circumstances. The relationship between similar material and the raw materials was analyzed. The results show that choosing different materials can compound different similar materials with different requirements. And the water-cement ratio plays a decisive influence on the compressive strength of similar material. The compressive strength of similar material decreases linearly when the water-cement ratio increases.


Author(s):  
Haopeng Jiang ◽  
Annan Jiang ◽  
Fengrui Zhang

Experimental tests were conducted to study the influence of natural cooling and water cooling on the physical and mechanical properties of quartz sandstone. This study aims to understand the effect of different cooling methods on the physical and mechanical properties of quartz sandstone (such as mass, volume, density, P-wave velocity, elastic modulus, uniaxial compressive strength, etc.). The results show that the uniaxial compressive strength (UCS) and elastic modulus(E) of the specimens cooled by natural-cooling and water-cooling decrease with heating temperature. At 800℃, after natural cooling and water cooling, the average value of UCS decreased by 34.65% and 57.90%, and the average value of E decreased by 87.66% and 89.05%, respectively. Meanwhile, scanning electron microscope (SEM) images were used to capture the development of microcracks and pores within the specimens after natural-cooling and water-cooling, and it was found that at the same temperature, water cooling treatment was more likely to cause microcracks and pores, which can cause more serious damage to the quartz sandstone. These results confirm that different cooling methods have different effects on the physical and mechanical properties of quartz sandstone, and provide a basis for the stability prediction of rock mass engineering such as tunnel suffering from fire.


2003 ◽  
Vol 125 (4) ◽  
pp. 288-292 ◽  
Author(s):  
Zhijun Li ◽  
Yongxue Wang ◽  
Xiwen Wang ◽  
Guangwei Li

The effects of cement content and curing period on a new synthetic model ice, DUT-1, are reported. The cement (450#) contents were 10%, 11%, 12%, 13%, 14%, 15% and 16% by dry weight of mixture material. Eight different curing periods were used: 66 h, 92 h, 115 h, 139 h, 163 h, 186 h, 211 h and 235 h. Physical and mechanical properties, such as density, compressive strength, flexural strength, and elastic modulus, were determined. The density and mechanical parameters were found to increase with increasing cement content, whereas the durations of curing period under normal air temperature resulted in increasing these properties to a maximum value, then decreasing values.


2018 ◽  
Vol 27 (3) ◽  
pp. 348-354 ◽  
Author(s):  
Jakub Jura ◽  
Małgorzata Ulewicz

The article presents the results of research aimed at using glass waste and ash from biomass. The tests were carried out for cement mortars samples with using glass cullet, ash from biomass and using both wastes in 50/50 proportions. The physical and mechanical properties of the standard mortar and modified mortars were tested. Standard mortar and cement mortar samples were made in which 10, 20 and 30% of the cement mass was used as part of the standard sand. The samples were made of CEM I 42.5R. Mortars containing fly ash addition had an increased compressive strength and a smaller drop in compressive strength after frost resistance tests than standard mortar. The use of glass cullet in the amount of up to 20% did not reveal any changes in the mechanical properties of mortars, but using them in a larger amount resulted in unfavorable results. The use of a mixture of these two waste materials did not improve the results. The research has shown the possibility of using this waste to modify cement mortars.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Ji-jing Wang ◽  
Zhen-ning Shi ◽  
Ling Zeng ◽  
Shuang-xing Qi

In order to analyze the influence of different nanoadditives on the physical and mechanical properties of similar silty mudstone materials, nano-TiO2 (NTi), nano Al2O3 (NAl), and nanobentonite (NBe) were added to improve the physical and mechanical properties of silty mudstone similar materials. The physical and mechanical parameters are more in line with silty rock. Finally, nanometer additives suitable for silty mudstone similar materials are determined by conducting density test, natural water absorption test, uniaxial compression test, splitting test, softening coefficient test, expansibility test, and microscopic test. The effects of adding NTi, NAl, and NBe on improving the physical and mechanical properties of silty mudstone similar materials were studied to analyze the influence law of different NTi, NAl, and NBe contents on similar material density, natural water absorption, uniaxial compressive strength, tensile strength, softening coefficient, expansion rate, and other physical and mechanical parameters. The microscopic morphology of similar materials was analyzed by scanning electron microscopy and the mechanism of influence of nanoadditives on the microscopic structure of samples was revealed. The results are as follows. (1) The density of similar materials of silty mudstone increases with the increase of the content of nanoadditive. The natural water absorption rate decreased first and then increased with the increase of the content of nanometer additives, while the softening coefficient decreased with the increase of the content of nanometer additives. The uniaxial compressive strength and tensile strength increased first and then decreased with the increase of the content of nanometer additives. This is due to the incorporation of the nanoadditive amount effective to promote the hydration reaction of gypsum and accelerate the production of cement, while a similar material may be filled in the pores, reducing the internal defects, a similar material to make denser; when excessive dosage, nanoadditives agglomeration occurs, resulting in deterioration of the effect, but will reduce the mechanical properties of similar materials. (2) When the content of NBe is 6%, the physical and mechanical parameters of similar materials can reach or be closer to the silty raw rock except uniaxial compressive strength. The failure mode of the uniaxial compression specimen is also the same as that of the original rock, which can be used as the best choice. The research results laid the foundation for further analysis of NBe application in similar materials.


2020 ◽  
Vol 26 (1) ◽  
pp. 9-16
Author(s):  
Yulita Arni Priastiwi ◽  
Arif Hidayat ◽  
Dwi Daryanto ◽  
Zidny Salamsyah Badru

The presence of white soil in a geopolymer mortar affects the physical and mechanical properties of the mortar itself, especially in compressive strength, density and modulus of elasticity produced. Geopolymer mortar composed of fly ash, sand, water, and NaOH which acts as an alkaline activator compared to mortar from the same material, but white soil from Kupang is added as a substitution of fly ash. Specimens are made in six variations. Geopolymer mortar composers using a ratio of 1 binder: 3 sand with w/b of 0.5. Binder composed of fly ash with white soil substitution of 0; 5; 10; 15; 20 and 30% by weight of fly ash. An activator NaOH 8M solution was added to the mixture. Both white soil and fly ash pass of sieve no. 200 with a moisture content of 0%. Mortar made measuring 5x5x5 cm. The mortar was treated by the oven of method at 60 oC for 24 hours until the mortar does not change in weight. The test results show geopolymer mortar with 15% substitution of white soil to fly ash has the highest compressive strength, density and modulus of elasticity among other variations. In all mortar variations, compressive strength at 14 days has reached 75% of strength at 28 days.


Author(s):  
Zhijun Li ◽  
Yongxue Wang ◽  
Xiwen Wang ◽  
Guangwei Li

The effect of cement content and curing period on a new kind of synthetic model ice, DUT–1 synthetic model ice is reported. The 450# cement contents were 10%, 11%, 12%, 13%, 14%, 15% and 16% by dry weight of mixture materials. Eight different curing periods were used: 66h, 92h, 115h, 139h, 163h, 186h, 211h and 235h. Physical and mechanical properties such as density, compressive strength, flexural strength, elastic modulus were determined. The cement content was found to increase the density and mechanical parameters with content increasing, whereas curing periods exhibited increasing these parameters to a top value, then decreasing under normal air temperature curing.


2018 ◽  
Vol 931 ◽  
pp. 475-480 ◽  
Author(s):  
Nikolay V. Lyubomirskiy ◽  
Stanisław Fic ◽  
Sergey I. Fedorkin

A technique for determining the modulus of elasticity of сonstruction materials on samples of small dimensions has been developed. Physical and mechanical properties of building materials based on calcareous-lime compositions of semi-dry pressing, hardening according to the principle of forced carbonization, depending on the prescription and technological factors of their production have been studied. It has been demonstrated that on the basis of these materials it is possible to obtain building products with compressive strength up to 30 MPa, tensile strength at bending up to 5 MPa and higher, and an elastic modulus up to 18 GPa.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2016 ◽  
Vol 13 (2) ◽  
pp. 67
Author(s):  
Engku Liyana Zafirah Engku Mohd Suhaimi ◽  
Jamil Salleh ◽  
Suzaini Abd Ghani ◽  
Mohamad Faizul Yahya ◽  
Mohd Rozi Ahmad

An investigation on the properties of Tenun Pahang fabric performances using alternative yarns was conducted. The studies were made in order to evaluate whether the Tenun Pahang fabric could be produced economically and at the same time maintain the fabric quality. Traditional Tenun Pahang fabric uses silk for both warp and weft. For this project, two alternative yarns were used which were bamboo and modal, which were a little lower in cost compared to silk. These yarns were woven with two variations, one with the yarns as weft only while maintaining the silk warp and the other with both warp and weft using the alternative yarns. Four (4) physical testings and three (3) mechanical testings conducted on the fabric samples. The fabric samples were evaluated including weight, thickness, thread density, crease recovery angle, stiffness and drapability. The results show that modal/silk and bamboo silk fabrics are comparable in terms of stiffness and drapability, hence they have the potential to replace 100% silk Tenun Pahang.


Sign in / Sign up

Export Citation Format

Share Document