Research on Microscopic Characteristics of Remaining Oil Distribution after Strong Alkali ASP Flooding by Laser Scanning Confocal Technology

2012 ◽  
Vol 616-618 ◽  
pp. 757-761 ◽  
Author(s):  
Yi Kun Liu ◽  
Ling Zhe Cai ◽  
Ling Yun Chen ◽  
Feng Jiao Wang

Different types of micro-pore structure and variation characteristics after long-term washing have a greater impact on micro-remaining-oil migration direction, distribution and content. This article applied Confocal Laser Scanning Technology to study reservoir fluid property and remaining oil micro distribution after strong alkali ASP flooding. Comparing the Laser Confocal analysis pictures of natural core after water drive and ASP flooding, coming to the conclusions that strong alkali ASP flooding sweep out larger amounts of heavy oil than water drive. Counting the ratio of different types micro-remaining-oil, and analysing on the displacement effects and mechanism of different types remaining oil after strong alkali ASP flooding.

2018 ◽  
Vol 43 (6) ◽  
pp. 602-612 ◽  
Author(s):  
C Yao ◽  
H Yang ◽  
J Yu ◽  
L Zhang ◽  
Y Zhu ◽  
...  

SUMMARY Objective: This study aimed to investigate the long-term effectiveness of ceramic–resin bonding with universal adhesives in non–silane-pretreated and silane-pretreated modes after 10,000 cycles of thermal aging. Methods and Materials: All Bond Universal, Adhese Universal, Clearfil Universal Bond, and Single Bond Universal were selected. Etched lithium disilicate glass ceramics were prepared, randomly assigned to groups, and pretreated with or without ceramic primer containing silane coupling agent prior to the application of universal adhesive (ie, silane-pretreated or non–silane-pretreated mode). The shear bond strength (SBS), microleakage, and field-emission scanning electron microscopy images of the ceramic–resin interfaces were examined after 24 hours of water storage or 10,000 thermal cycles. Light microscopy and confocal laser scanning microscopy (CLSM) were performed to analyze marginal sealing ability. Results: SBS and microleakage percentage were significantly affected by bonding procedure (non–silane-pretreated or silane-pretreated mode) and aging (24 hours or 10,000 thermal cycles). After the universal adhesives in the non–silane-pretreated mode were aged, SBS significantly decreased and microleakage percentage increased. By contrast, the SBS of Adhese Universal, Clearfil Universal Bond, and Single Bond Universal decreased, and the microleakage percentage of all of the adhesives increased in the silane-pretreated mode. However, after aging, the SBS of the silane-pretreated groups were higher and their microleakage percentages lower than those of the non–pretreated groups. In the non–silane-pretreated mode, adhesive failure was dominant and gaps between composite resin and the adhesive layer were significant when observed with CLSM. Conclusions: The simplified procedure reduced the ceramic–resin bonding effectiveness of universal adhesives after aging, and additional silane pretreatment helped improve the long-term durability.


2019 ◽  
Author(s):  
Emma Björk ◽  
Bernhard Baumann ◽  
Florian Hausladen ◽  
Rainer Wittig ◽  
mika lindén

Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100 – 900 nm) and hence thicknesses were grown onto OTS-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the model drug DiO, and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. A substantial amount of DiO loaded particles were however attached on the substrate after 24 making the films attractive as a long-term reservoir for drugs on e.g. medical implants.<br>


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1107
Author(s):  
Boris P. Yakimov ◽  
Yury I. Gurfinkel ◽  
Denis A. Davydov ◽  
Anastasia S. Allenova ◽  
Gleb S. Budylin ◽  
...  

Edema, i.e., fluid accumulation in the interstitial space, accompanies numerous pathological states of the human organism, including heart failure (HF), inflammatory response, and lymphedema. Nevertheless, techniques for quantitative assessment of the edema’s severity and dynamics are absent in clinical practice, and the analysis is mainly limited to physical examination. This fact stimulates the development of novel methods for fast and reliable diagnostics of fluid retention in tissues. In this work, we focused on the possibilities of two microscopic techniques, nailfold video capillaroscopy (NVC) and confocal laser scanning microscopy (CLSM), in the assessment of the short-term and long-term cutaneous edema. We showed that for the patients with HF, morphological parameters obtained by NVC—namely, the apical diameter of capillaries and the size of the perivascular zone—indicate long-term edema. On the other hand, for healthy volunteers, the application of two models of short-term edema, venous occlusion, and histamine treatment of the skin, did not reveal notable changes in the capillary parameters. However, a significant reduction of the NVC image sharpness was observed in this case, which was suggested to be due to water accumulation in the epidermis. To verify these findings, we made use of CLSM, which provides the skin structure with cellular resolution. It was observed that for the histamine-treated skin, the areas of the dermal papillae become hyporefractive, leading to the loss of contrast and the lower visibility of capillaries. Similar effect was observed for patients undergoing infusion therapy. Collectively, our results reveal the parameters can be used for pericapillary edema assessment using the NVC and CLSM, and paves the way for their application in a clinical set-up.


2019 ◽  
Author(s):  
Emma Björk ◽  
Bernhard Baumann ◽  
Florian Hausladen ◽  
Rainer Wittig ◽  
mika lindén

Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100 – 900 nm) and hence thicknesses were grown onto OTS-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the model drug DiO, and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. A substantial amount of DiO loaded particles were however attached on the substrate after 24 making the films attractive as a long-term reservoir for drugs on e.g. medical implants.<br>


2019 ◽  
Vol 57 (6) ◽  
pp. 581-585
Author(s):  
Johnica Jo Morrow ◽  
Christian Elowsky

Confocal laser scanning microscopy (CLSM) was used to examine archaeoparasitological specimens from coprolites associated with La Cueva de los Muertos Chiquitos (CMC) located near present-day Durango, Mexico. The eggs for 4 different types of parasites recovered from CMC coprolites were imaged using CLSM to assist with identification efforts. While some of the parasite eggs recovered from CMC coprolites were readily identified using standard light microscopy (LM), CLSM provided useful data for more challenging identifications by highlighting subtle morphological features and enhancing visualization of parasite egg anatomy. While other advanced microscopy techniques, such as scanning electron microscopy (SEM), may also detect cryptic identifying characters, CLSM is less destructive to the specimens. Utilizing CLSM allows for subsequent examinations, such as molecular analyses, that cannot be performed following SEM sample preparation and imaging. Furthermore, CLSM detects intrinsic autofluorescence molecules, making improved identification independent of resource and time-intensive protocols. These aspects of CLSM make it an excellent method for assisting in taxonomic identification and for acquiring more detailed images of archaeoparasitological specimens.


2007 ◽  
Vol 330-332 ◽  
pp. 1045-1048 ◽  
Author(s):  
Shu Hua Zhang ◽  
Ying Jun Wang ◽  
Kun Wei ◽  
Xu Dong Wang

Hydroxyapatite(HA) nanoparticles with hydrophobic surface have been synthesized using mono-alkyl phosphate (MAP) as modifier by hydrothermal synthesis method. The drug-loaded nano-HA/ Poly(ε-caprolactone)(PCL)composite microspheres and drug-load PCL microspheres were fabricated by an S/O/W emulsion solvent evaporation method. The microspheres morphology was investigated by scanning electron microscopy (SEM). Drug distribution in microsphere matrix was studied by confocal laser scanning microscope (CLSM). The results showed that the drug distributed evenly in the drug-HA-PCL microspheres, but only around the surface of the drug-PCL microspheres. The drug release profile showed that the nano-HA/PCL hybrid microspheres had low initial burst and could release continually for 90 days. This kind of hybrid microspheres can be used as a promising long-term drug delivery system in the bone.


Author(s):  
Wanbin Hu ◽  
Leonie van Steijn ◽  
Chen Li ◽  
Fons J. Verbeek ◽  
Lu Cao ◽  
...  

Toll-like receptor (TLR) signaling via myeloid differentiation factor 88 protein (MyD88) has been indicated to be involved in the response to wounding. It remains unknown whether the putative role of MyD88 in wounding responses is due to a control of leukocyte cell migration. The aim of this study was to explore in vivo whether TLR2 and MyD88 are involved in modulating neutrophil and macrophage cell migration behavior upon zebrafish larval tail wounding. Live cell imaging of tail-wounded larvae was performed in tlr2 and myd88 mutants and their corresponding wild type siblings. In order to visualize cell migration following tissue damage, we constructed double transgenic lines with fluorescent markers for macrophages and neutrophils in all mutant and sibling zebrafish lines. Three days post fertilization (dpf), tail-wounded larvae were studied using confocal laser scanning microscopy (CLSM) to quantify the number of recruited cells at the wounding area. We found that in both tlr2–/– and myd88–/– groups the recruited neutrophil and macrophage numbers are decreased compared to their wild type sibling controls. Through analyses of neutrophil and macrophage migration patterns, we demonstrated that both tlr2 and myd88 control the migration direction of distant neutrophils upon wounding. Furthermore, in both the tlr2 and the myd88 mutants, macrophages migrated more slowly toward the wound edge. Taken together, our findings show that tlr2 and myd88 are involved in responses to tail wounding by regulating the behavior and speed of leukocyte migration in vivo.


2020 ◽  
Vol 23 (3) ◽  
pp. 182-187
Author(s):  
Anastasia S. Romashkina ◽  
O. Y. Olisova ◽  
E. S. Snarskaya

Background: The authors presented their own experiences of skin restoration in patients with rosacea after a course of active therapy using transdermal redermalization. Aim: The course of cosmetic correction procedures using this method aimed to restore the energy potential of cells, water balance, and structures of the dermal elastin fibers, normalize microcirculation processes, and create an optimal physiological environment for the mitotic activity of epidermal cells. Materials and methods: An innovative method of transdermal redermalization represents the administration of a drug containing hyaluronic acid and sodium succinate using the technique of papular intradermal injections, taking into account the peculiarities of lymphatic drainage in the facial area. Results: To assess the therapys efficiency, noninvasive monitoring of changes in morphological structures of the skin was performed using confocal laser scanning microscopy. Conclusions: The authors revealed the high efficiency of the method, which controls the remission state for a long term, subsequently avoiding drug therapy


Sign in / Sign up

Export Citation Format

Share Document