scholarly journals Cell Adherence and Drug Delivery from Particle Based Mesoporous Silica Films

2019 ◽  
Author(s):  
Emma Björk ◽  
Bernhard Baumann ◽  
Florian Hausladen ◽  
Rainer Wittig ◽  
mika lindén

Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100 – 900 nm) and hence thicknesses were grown onto OTS-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the model drug DiO, and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. A substantial amount of DiO loaded particles were however attached on the substrate after 24 making the films attractive as a long-term reservoir for drugs on e.g. medical implants.<br>

2019 ◽  
Author(s):  
Emma Björk ◽  
Bernhard Baumann ◽  
Florian Hausladen ◽  
Rainer Wittig ◽  
mika lindén

Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100 – 900 nm) and hence thicknesses were grown onto OTS-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the model drug DiO, and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. A substantial amount of DiO loaded particles were however attached on the substrate after 24 making the films attractive as a long-term reservoir for drugs on e.g. medical implants.<br>


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 770
Author(s):  
Patrick M. Perrigue ◽  
Richard A. Murray ◽  
Angelika Mielcarek ◽  
Agata Henschke ◽  
Sergio E. Moya

Nanoformulations offer multiple advantages over conventional drug delivery, enhancing solubility, biocompatibility, and bioavailability of drugs. Nanocarriers can be engineered with targeting ligands for reaching specific tissue or cells, thus reducing the side effects of payloads. Following systemic delivery, nanocarriers must deliver encapsulated drugs, usually through nanocarrier degradation. A premature degradation, or the loss of the nanocarrier coating, may prevent the drug’s delivery to the targeted tissue. Despite their importance, stability and degradation of nanocarriers in biological environments are largely not studied in the literature. Here we review techniques for tracing the fate of nanocarriers, focusing on nanocarrier degradation and drug release both intracellularly and in vivo. Intracellularly, we will discuss different fluorescence techniques: confocal laser scanning microscopy, fluorescence correlation spectroscopy, lifetime imaging, flow cytometry, etc. We also consider confocal Raman microscopy as a label-free technique to trace colocalization of nanocarriers and drugs. In vivo we will consider fluorescence and nuclear imaging for tracing nanocarriers. Positron emission tomography and single-photon emission computed tomography are used for a quantitative assessment of nanocarrier and payload biodistribution. Strategies for dual radiolabelling of the nanocarriers and the payload for tracing carrier degradation, as well as the efficacy of the payload delivery in vivo, are also discussed.


2018 ◽  
Vol 43 (6) ◽  
pp. 602-612 ◽  
Author(s):  
C Yao ◽  
H Yang ◽  
J Yu ◽  
L Zhang ◽  
Y Zhu ◽  
...  

SUMMARY Objective: This study aimed to investigate the long-term effectiveness of ceramic–resin bonding with universal adhesives in non–silane-pretreated and silane-pretreated modes after 10,000 cycles of thermal aging. Methods and Materials: All Bond Universal, Adhese Universal, Clearfil Universal Bond, and Single Bond Universal were selected. Etched lithium disilicate glass ceramics were prepared, randomly assigned to groups, and pretreated with or without ceramic primer containing silane coupling agent prior to the application of universal adhesive (ie, silane-pretreated or non–silane-pretreated mode). The shear bond strength (SBS), microleakage, and field-emission scanning electron microscopy images of the ceramic–resin interfaces were examined after 24 hours of water storage or 10,000 thermal cycles. Light microscopy and confocal laser scanning microscopy (CLSM) were performed to analyze marginal sealing ability. Results: SBS and microleakage percentage were significantly affected by bonding procedure (non–silane-pretreated or silane-pretreated mode) and aging (24 hours or 10,000 thermal cycles). After the universal adhesives in the non–silane-pretreated mode were aged, SBS significantly decreased and microleakage percentage increased. By contrast, the SBS of Adhese Universal, Clearfil Universal Bond, and Single Bond Universal decreased, and the microleakage percentage of all of the adhesives increased in the silane-pretreated mode. However, after aging, the SBS of the silane-pretreated groups were higher and their microleakage percentages lower than those of the non–pretreated groups. In the non–silane-pretreated mode, adhesive failure was dominant and gaps between composite resin and the adhesive layer were significant when observed with CLSM. Conclusions: The simplified procedure reduced the ceramic–resin bonding effectiveness of universal adhesives after aging, and additional silane pretreatment helped improve the long-term durability.


Diagnostics ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1107
Author(s):  
Boris P. Yakimov ◽  
Yury I. Gurfinkel ◽  
Denis A. Davydov ◽  
Anastasia S. Allenova ◽  
Gleb S. Budylin ◽  
...  

Edema, i.e., fluid accumulation in the interstitial space, accompanies numerous pathological states of the human organism, including heart failure (HF), inflammatory response, and lymphedema. Nevertheless, techniques for quantitative assessment of the edema’s severity and dynamics are absent in clinical practice, and the analysis is mainly limited to physical examination. This fact stimulates the development of novel methods for fast and reliable diagnostics of fluid retention in tissues. In this work, we focused on the possibilities of two microscopic techniques, nailfold video capillaroscopy (NVC) and confocal laser scanning microscopy (CLSM), in the assessment of the short-term and long-term cutaneous edema. We showed that for the patients with HF, morphological parameters obtained by NVC—namely, the apical diameter of capillaries and the size of the perivascular zone—indicate long-term edema. On the other hand, for healthy volunteers, the application of two models of short-term edema, venous occlusion, and histamine treatment of the skin, did not reveal notable changes in the capillary parameters. However, a significant reduction of the NVC image sharpness was observed in this case, which was suggested to be due to water accumulation in the epidermis. To verify these findings, we made use of CLSM, which provides the skin structure with cellular resolution. It was observed that for the histamine-treated skin, the areas of the dermal papillae become hyporefractive, leading to the loss of contrast and the lower visibility of capillaries. Similar effect was observed for patients undergoing infusion therapy. Collectively, our results reveal the parameters can be used for pericapillary edema assessment using the NVC and CLSM, and paves the way for their application in a clinical set-up.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Zehua Liu ◽  
Shaoheng Tang ◽  
Zhiran Xu ◽  
Yingjun Wang ◽  
Xuan Zhu ◽  
...  

For preventing premature drug release in neutral environment and avoiding them being trapped into the endosomal/lysosomal system, we developed a novel iron silicate@liposome hybrid (ILH) formulation, which can be used as a carrier to transport doxorubicin (DOX) in a pH-sensitive manner and to escape from endosomal/lysosomal trapping through “proton-sponge” effect. The high intensity of photoacoustic signal fromin vitrophotoacoustic imaging (PAI) experiments suggests that it is a promising candidate for PAI agent, providing the potential for simultaneously bioimaging and cancer-targeting drug delivery. Cytotoxicity of our formulation toward tumor cells was remarkably higher than free DOX (48.4±7.7% and26.2±8.4%,P<0.001). Confocal laser scanning microscopy experiments showed the enhanced transportation and enrichment process of DOX in QSG-7703 cells. Taking together, we developed an easy approach to construct a multifunctional anticancer drug delivery/imaging system with a potency as a PAI agent. The strategy of combining drug carrier and imaging agent is an emerging platform for further construction of nanoparticle and may play a significant role in cancer therapy and diagnosis.


2008 ◽  
Vol 8 (6) ◽  
pp. 3085-3090 ◽  
Author(s):  
Akihiro Hayama ◽  
Tatsuhiro Yamamoto ◽  
Masayuki Yokoyama ◽  
Kumi Kawano ◽  
Yoshiyuki Hattori ◽  
...  

A novel technique was developed for the formation of ligand-targeted polymeric micelles that can be applicable to various ligands. For tumor-specific drug delivery, camptothecin (CPT)-loaded polymeric micelles were modified by folate to produce a folate-receptor-targeted drug carrier. Folate-linked PEG5000-distearoylphosphatidylethanolamine (folate-PEG5000-DSPE) was added when preparations of drug-loaded polymeric micelles, resulting in folate ligands exposed to the surface. Folate-modified CPT-loaded polymeric micelles (F-micelle) were evaluated by measuring cellular uptake using a flow cytometer, fluorescence microscopy, and confocal laser scanning microscopy, and by cytotoxicity measurement. The results revealed that F-micelle showed higher cellular uptake in KB cells over-expressing folate receptor (FR) and higher cytotoxicity compared with non-folate modified CPT-loaded polymeric micelles (plain micelles) in KB cells, but not in FR-negative HepG2 cells. This result indicated that polymeric micelles were successfully modified by the folate-linked lipid.


1992 ◽  
Vol 40 (9) ◽  
pp. 1353-1361 ◽  
Author(s):  
M J Good ◽  
W J Hage ◽  
C L Mummery ◽  
S W De Laat ◽  
J Boonstra

We have established a method for quantifying binding of fluorescence-labeled growth factors to their receptors on single cells in situ with the confocal laser scanning microscope (CLSM). Biotinylated epidermal growth factor (EGF) coupled to phycoerythrin-labeled anti-biotin was used to compare the levels of fluorescence on three different cell types for which the number of EGF factors was known from Scatchard analysis of [125I]-EGF binding. The results showed that as few as 10,000 receptors/cell were detectable above back-ground. This method will provide a rapid and quantifiable alternative to autoradiography for ligand binding to single cells in situ.


Author(s):  
J.N. Turner ◽  
J. Swann ◽  
K. Smith ◽  
M. Siemens ◽  
D. Szarowski ◽  
...  

Confocal laser scanning microscopy (CLSM) is capable of three-dimensional imaging of fluorescently labeled single cells. Efficient detection via a photomultiplier and optical sectioning with high rejection of light from other specimen levels make it possible to image cells surrounded by either labeled or unlabeled tissue. It is no longer necessary to restrict high resolution light microscopy to cultured cells or those near the surface of a tissue sample. Cells can be observed üin situ” in a physiologically characterized environment. Central nervous system neurons can be electrophysiologically characterized and then injected with a fluorescent dye such as lucifer yellow. The CLSM can excite the dye and image the fluorescent emission in thick tissue preparations (hundreds of micrometers) making possible a new approach to the correlation of physiology and anatomy.Brain slices 350 μm thick were obtained from hippocampus and inferior colliculus of immature rats and incubated in oxygenated artificial cerebrospinal fluid. Cells were penetrated with micropipets, characterized electrophysiologically and ionophoretically injected with 5% lucifer yellow in LiAc.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3429 ◽  
Author(s):  
Jia Yao ◽  
Yinyun Ma ◽  
Wei Zhang ◽  
Li Li ◽  
Yun Zhang ◽  
...  

TH(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), a histidine-rich, cell-penetrating peptide with acid-activated pH response, designed and synthesized by our group, can effectively target tumor tissues with an acidic extracellular environment. Since the protonating effect of histidine plays a critical role in the acid-activated, cell-penetrating ability of TH, we designed a series of new histidine substituents by introducing electron donating groups (Ethyl, Isopropyl, Butyl) to the C-2 position of histidine. This resulted in an enhanced pH-response and improved the application of TH in tumor-targeted delivery systems. The substituents were further utilized to form the corresponding TH analogs (Ethyl-TH, Isopropyl-TH and Butyl-TH), making them easier to protonate for positive charge in acidic tumor microenvironments. The pH-dependent cellular uptake efficiencies of new TH analogs were further evaluated using flow cytometry and confocal laser scanning microscopy, demonstrating that ethyl-TH and butyl-TH had an optimal pH-response in an acidic environment. Importantly, the new TH analogs exhibited relatively lower toxicity than TH. In addition, these new TH analogs were linked to the antitumor drug camptothecin (CPT), while butyl-TH modified conjugate presented a remarkably stronger pH-dependent cytotoxicity to cancer cells than TH and the other conjugates. In short, our work opens a new avenue for the development of improved acid-activated, cell-penetrating peptides as efficient anticancer drug delivery vectors.


Sign in / Sign up

Export Citation Format

Share Document