Effect of Moisture Regain of Cotton Roving on Spun Yarn Quality

2012 ◽  
Vol 627 ◽  
pp. 279-282
Author(s):  
Yan Ming Zhang ◽  
Qi Ming Zhao ◽  
Zheng Xue Wu

Different moisture regain of cotton roving was obtained by changing the relative humidity of constant temperature and humidity chamber. Then the cotton roving with different moisture regain was used for producing spun yarn on sample spinning frame. The hairiness value, evenness, breaking strength and elongation of the above spun yarns were tested. And the influence of moisture regain of cotton roving on the quality of spun yarn was discussed. The results show that, there is an exponential relationship between moisture regains of cotton roving and relative environmental humidity, and when the value of the moisture regain of cotton roving is about 7% ~7.3%, the spun yarn quality is the best.

2019 ◽  
Vol 89 (21-22) ◽  
pp. 4438-4451 ◽  
Author(s):  
Peiying Li ◽  
Mingrui Guo ◽  
Fengxin Sun ◽  
Weidong Gao

An agent-aided system (AAS) for improving comprehensive properties of ring spun yarns with the aid of viscosity and surface tension of the agent is reported in this paper. The mechanism of the humidification and friction process of the AAS was investigated, and related experiments were also carried out to verify the mechanism of analysis. The results confirm that the AAS can attach the fiber ends protruding out of a yarn body on the yarn surface and assist in twisting the fiber ends back into the interior of the yarn body, resulting in a significant reduction of the modified ring spun yarn hairiness. Moreover, the yarn hairiness is prominently reduced after the winding process. The experimental results also show that a speed ratio of 1.3 between the rotating speed of the cylinder and the output speed of the yarn leads to the greatest extent of harmful hairiness reduction (34%), which also corresponds to optimal modified yarn tenacity. Meanwhile, the modified ring spun yarns show a tight and smooth appearance, and the yarn evenness has no deterioration. In addition, the AAS is applicable to both cotton and viscose yarns with different yarn counts. Therefore, the AAS can potentially be used to reduce yarn hairiness for ring spun yarns and enhance the quality of ring spun yarns in the textile industry.


2018 ◽  
Vol 13 (2) ◽  
pp. 155892501801300 ◽  
Author(s):  
Furqan Khurshid ◽  
Sarmad Aslam ◽  
Usman Ali ◽  
Amir Abbas ◽  
Talha Ali Hamdani ◽  
...  

The aim of the present work is to optimize the drafting parameters for ring spinning by using full factorial (23) experimental design. Three drafting parameters of ring spinning each at two levels were chosen for this study. These technological parameters were break draft, size of pin spacer and hardness of rubber cots. It was found from statistical analysis that pin spacer size has a significant effect on yarn unevenness (U %), imperfection index (IPI), hairiness (H) and yarn strength (CLSP) compared to the other two chosen factors. These yarn quality parameters were improved by increasing the spacer size. The increase in spacer size reduces the cohesive forces among the fibers during drafting. The pin between the cradle and the top front roller transfer the individual fibers from the drafted fiber assembly to the spinning triangle without any stretching or accumulation. This yields a more integrated structure and the quality of yarn is improved.


2012 ◽  
Vol 7 (2) ◽  
pp. 155892501200700 ◽  
Author(s):  
Abdolrasool Moghassem ◽  
Alireza Fallahpour ◽  
Mohsen Shanbeh

Exploring relationships between characteristics of a yarn and influencing factors is momentous subject to optimize the selection of the variables. Different modelling methodologies have been used to predict spun yarn properties. Developing a prediction approach with higher degree of precision is a subject that has received attention by the researchers. In the last decade, Artificial Neural Network (ANN) has been developed successfully for textile nonlinear processes. In spite of the precision, ANN is a black box and does not indicate inter-relationship between input and output parameters. Hence, Gene Expression Programming (GEP) is presented here as an intelligent algorithm to predict breaking strength of rotor spun yarns based on draw frame parameters as one of the most important stages in spinning line. Forty eight samples were produced and different models were evaluated. Prediction performance of the GEP was compared with that of ANN using Mean Square Error (MSE) and correlation coefficient (R2-Value) parameters on test data. The results showed a better capability of the GEP model in comparison to the ANN model. The R2-value and MSE were 97% and 0.071 respectively which means desirable predictive power of GEP algorithm. Finally, an equation was extracted to predict breaking strength of the yarns with a high degree of accuracy using GEP algorithm.


2021 ◽  
Author(s):  
Muhammad Ali Zeeshan ◽  
Zamir Ahmed Abro ◽  
Abdul Malik Rehan ◽  
Ahmer Hussain Shah ◽  
Nazakat Ali Khoso ◽  
...  

Abstract Cotton is the most commonly used natural fiber and has a significant contribution to the production of yarn manufacturing. This yarn is subsequently utilized for the production of fabrics, garments, and other textile products. The quality of the end product depends on the selection of an appropriate spinning process and output parameters. Numerous methods and processes are involved in the production of yarn. Ring spinning machine is most commonly used for the production of cotton spun yarn. It is necessary to optimize the process parameters of ring-spun yarn without compromising on quality and production. In this research work; these parameters have been optimized by applying the multiple linear regression analysis. The process parameters (especially spindle speed, twist and yarn diameter) and their effect on yarn quality have been discussed in detail. Total 135 ring-spun yarn samples have been produced under three different levels of spindle speed, twist, and linear density. These yarn samples are categorized as 8 Ne, 16 Ne, and 24 Ne at three different Twist multipliers (3.8, 4.0, and 4.2) and different revolutions per minute of the spindle (9500 rpm, 10500rpm, and 11500 rpm). The models have been designed to predict the quality of ring-spun by utilizing USTER evenness tester data. The Count of yarn, yarn twist, and spindle speed were selected as a predictor. The multiple regression method has been used to find out the relation between the process parameters and yarn quality characteristics. The high values of R2 (the coefficient of determination) showed the relationships in the prediction model.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Biruk Fentahun Adamu ◽  
Desalegn Atalie ◽  
Erkihun Zelalem Liyew

Yarn quality influences both fabric production processes efficiency and export market. One method used to gauge competitiveness of an industry is to study its product quality. The aim of this research work is to evaluate the quality of Ethiopian textile spinning mills’ 100% cotton carded ring spun yarns in terms of its evenness (coefficient of mass variation, CVm), imperfections (thick and thin places, neps), and tensile properties with USTER Statistics 2018. Five spinning mills (B3, A0, A2, A4, and K3) of 15N, 20Ne, 25Ne, 30Ne, 35Ne, and 40Ne nominal yarn counts have been selected for the study. The yarn evenness and imperfections were measured using USTER tester 5 and tensile using a STATIMAT tester. The USTER statistical results showed 20.3Ne (mill B3), 32Ne (mill A4), and 36.2Ne (mill A2) had better overall quality, respectively. It was observed that most selected spinning mills had low evenness, imperfections, yarn strength, and good yarn elongation. Tensile properties of A2 (32.85Ne and 36.2Ne) had fallen under 5% USTER statistics percentile which indicates excellent yarn strength. Generally, from studied mills, it was seen that 61.5% of cotton yarn CVm and thin places falls at above 95% and 15% of yarn tenacity falls at ≤5% of Uster statistical percentile.


2010 ◽  
Vol 5 (1) ◽  
pp. 155892501000500 ◽  
Author(s):  
B. R. Das

The tensile properties of spun yarn are accepted as one of the most important parameters for assessment of yarn quality. The tensile properties decide the performance of post spinning operations; warping, weaving and knitting and the properties of the final textile structure; hence its accurate technical evaluation carries much importance in industrial applications. There is no doubt that all the studies related to tensile behaviour of spun yarns are invaluable both in theory and practice. In this article, a critical review of the theoretical and practical aspect of static tensile behaviour of staple yarns has been discussed.


2021 ◽  
pp. 004051752198909
Author(s):  
Zeguang Pei ◽  
Xingbao Wang ◽  
Zhimin Li ◽  
Lei Xiao ◽  
Tao Bai ◽  
...  

Vortex core-spun yarn containing a metal wire has a broad application prospect owing to the combination of its fasciated structure, durability, comfort, and its electrical properties. In this paper, three-dimensional numerical simulations on the flow characteristics inside the nozzle of a modified vortex spinning system for producing core-spun yarns are carried out to investigate the effect of some process and nozzle structural parameters—the nozzle pressure, distance between nozzle inlet and spindle, and protrusion length of the filament feeding tube—on the flow field. Using a machine vision system, experiments are also conducted to investigate the effects of these parameters on the wrapping defects of the vortex core-spun yarns which are then analyzed based on the simulation results. The number of wrapping defects on the yarn greatly decreases as the nozzle pressure increases from 4 × 105 Pa to 5 × 105 Pa. As the distance between nozzle inlet and spindle increases, the number of wrapping defects on the yarn first decreases and then increases. The effect of protrusion length of the filament feeding tube is found to be insignificant. This experimental and numerical study can provide a feasible way for optimizing the quality of the core-spun yarn produced on the modified vortex spinning system and analyzing the mechanism of the effects of parameters.


2018 ◽  
Vol 26 (1(127)) ◽  
pp. 30-35
Author(s):  
Iwona Frydrych ◽  
Xuzhong Su ◽  
Xiaoxuan Qin ◽  
Xiaoxuan Qin ◽  
Xiaoxuan Qin ◽  
...  

Cellulosic fibre is a kind of renewable fibre that has attracted more and more attention in textile processing recently. Yarn spinning is the first fundamental process in textile processing. Therefore, in this paper, taking viscose fibre and tencel fibre as examples, the qualities of cellulosic yarn were studied. Three kinds of pure viscose and tencel yarn: 14.6 tex (40S), 9.7 tex (60S) and 7.3 tex (80S), were spun on a ring spinning system modified with lattice apron compact spinning (LACS) and complete condensing spinning (CCS), respectively. The spun yarn qualities, yarn evenness, breaking strength and hairiness, were tested and comparatively analysed. Then two kinds of cellulosic blend yarn including 14.6 tex, 9.7 tex and 7.3 tex JC/R 60/40 yarn, and 14.6 tex, 9.7 tex and 7.3 tex JC/T 70/30 yarns were spun on a ring spinning system modified with CCS. The spun yarn evenness, breaking strength and hairiness were tested, and the cross sections of the spun yarns were presented using a Y172 Hardy’s thin cross-section sampling device. The results show that for both the pure viscose and tencel yarn, compared with LACS, CCS has better yarn evenness, a little lower yarn breaking strength and a little more hairiness, while the uniformity of yarn qualities are all improved. For the cellulosic blend yarn, compared with the pure cellulosic yarn, yarn evenness is worse, especially for the cotton and tencel blend yarn.


2011 ◽  
Vol 291-294 ◽  
pp. 339-343
Author(s):  
Jia Zhi Ren ◽  
Guo Xin Jia ◽  
Qing Guo Feng

For combed spun yarn of high quality, the feed amount per cycle and the bat weight have to be chosen correctly. When the feed amount per cycle and the bat weight are too low or too great, there is an effect on the combing efficiency, piecing quality, percentage of noil and quality of spun yarn. The influence of the feed amount per cycle and the bat weigh on combing efficiency, percentage of noil and piecing quality are analyzed theoretically. In order to investigate the effects of the feed amount per cycle and the bat weight on yarn quality (unevenness CV%, thin places, thick places and neps), The 14.6 tex yarn is spun on combing spinning system with E62 comber. The results of our investigations reveal that high combing efficiency and high quality yarn can be obtained with a lesser feed amount per cycle and a bigger bat weight on new type of cotton comber.


2009 ◽  
Vol 4 (4) ◽  
pp. 155892500900400 ◽  
Author(s):  
Calvin Price ◽  
Herman Senter ◽  
Jonn Foulk ◽  
Gary Gamble ◽  
William Meredith

The Cotton Quality Research Station (CQRS) of the USDA-ARS, recently completed a comprehensive study of the relationship of cotton fiber properties to the quality of spun yarn. The five year study, began in 2001, utilized commercial variety cotton grown, harvested and ginned in each of three major growing regions in the US (Georgia, Mississippi, and Texas). CQRS made extensive measurements of the raw cotton properties (both physical and chemical) of 154 lots of blended cotton. These lots were then spun into yarn in the CQRS laboratory by vortex spinning with several characteristics of the yarn and spinning efficiency measured for each lot. This study examines the use of a multivariate statistical method, partial least squares (PLS), to relate fiber properties to spun yarn quality for vortex spinning. Two different sets of predictors were used to forecast yarn quality response variables: one set being only HVI” variables, and the second set consisting of both HVI” and AFIS” variables. The quality of predictions was not found to significantly change with the addition of AFIS” variables.


Sign in / Sign up

Export Citation Format

Share Document