Numerical Simulation of Unsteady Aerodynamic Loads over an Aerofoil in Transonic Flow

2013 ◽  
Vol 644 ◽  
pp. 275-278 ◽  
Author(s):  
Yu Qian ◽  
Jun Li Yang ◽  
Xiao Jun Xiang ◽  
Ming Qiang Chen

The unsteady aerodynamic loads are the basic of the aeroelasitc. This paper focuses on the computation of the unsteady aerodynamic loads for forced periodic motions under high subsonic Mach numbers. The flow is modeled using the Euler equations and an unsteady time-domain solver is used for the computation of aerodynamic loads for forced periodic motions. The Euler equations are discretized on curvilinear multi-block body conforming girds using a cell-centred finite volume method. The implicit dual-time method proposed by Jameson is used for time-accurate calculations. Rigid body motions were treated by moving the mesh rigidly in response to the applied sinusoidal motion. For NACA 0012 airfoil, a validation of the unsteady aerodynamics loads is first considered. Furthermore, a study for understanding the influence of motion parameters, the Mach number, mean angle of incidence, reduced frequency, amplitude, was also conducted. A reverse of the trend of hysteretic loops can be observed with the increasing of the Mach number. Nonlinear hysteretic loops are turned up when increasing the amplitude and the reduced frequency during the applied pitch sinusoidal motion.

2014 ◽  
Vol 908 ◽  
pp. 264-268
Author(s):  
Xiao Jun Xiang ◽  
Yu Qian

The unsteady aerodynamic loads are the basic of the aeroelastic. This paper focuses on the computation of the unsteady aerodynamic loads for forced periodic motions under different Mach numbers. The flow is modeled using the Euler equations and an unsteady time-domain solver is used for the computation of aerodynamic loads for forced periodic motions. The Euler equations are discretized on curvilinear multi-block body conforming girds using a cell-centred finite volume method. The implicit dual-time method proposed by Jameson is used for time-accurate calculations. Rigid body motions were treated by moving the mesh rigidly in response to the applied sinusoidal motion. For an aircraft model, a validation of the unsteady aerodynamics loads is first considered. Furthermore, a study for understanding the influence of different Mach number was conducted. A reverse of the trend of hysteretic loops can be observed with the increasing of the Mach number.


Author(s):  
M. Soltani ◽  
M. Seddighi ◽  
F. Rasi

A series of experiments were conducted on an oscillating airfoil in subsonic flow. The model was oscillated in two types of motions, pitch and plunge, at different velocities, and reduced frequencies. In addition, steady data were acquired and examined to furnish a baseline for analysis and comparison. The imposed variables of the experiment were reduced frequency, mean incident angle, amplitude of motion, and free stream velocity as well as the surface grit roughness. The unsteady aerodynamic loads were calculated using surface pressure measurements, 64 ports, along the chord for both upper and lower surfaces of the model. Particular emphases were placed on the effects of different type of motion on the unsteady aerodynamic loads of the airfoil at pre-stall, near stall, and post stall conditions. Variations of the aerodynamic coefficients with equivalent angle of attack for both pitching and plunging motions showed strong sensitivity to the reduced frequency, oscillation amplitude, Reynolds number, and mean angles of attack.


Author(s):  
Jun Liu ◽  
Zhengqi Gu ◽  
Taiming Huang ◽  
Shuya Li ◽  
Ledian Zheng ◽  
...  

The severe additional aerodynamic loads that are generated on a small car when overtaking a coach have an adverse effect on the car handling stability and its safety. In this article, a two-way coupling of the unsteady aerodynamics and multi-body dynamics is performed in order to study the mutual interactions of a car in an overtaking maneuver with a coach. The unsteady aerodynamic interactions are obtained by using SST (Menter) K-Omega Detached Eddy Simulation and overset mesh technology. The aerodynamics couple the multi-body dynamics, taking into account the effects of the transverse spacing and the cross winds. To validate the necessity of the two-way coupling method, a one-way coupling of the aerodynamics to the vehicle motion is also conducted. Finally, by comparing the aerodynamic loads and the dynamic response of the overtaking car in different overtaking maneuvers between one- and two-way coupling, the results show that it should be considered with two-way coupling analyses of the car while overtaking a coach, particularly under the severe conditions of a lower transverse spacing or the crosswinds.


1993 ◽  
Vol 115 (1) ◽  
pp. 197-206 ◽  
Author(s):  
S. R. Manwaring ◽  
S. Fleeter

A series of experiments is performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake-generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained that describe the fundamental unsteady aerodynamic gust interaction phenomena on the first-stage rotor blades of a research axial flow compressor generated by the wakes from the inlet guide vanes. In these experiments, the effects of steady blade aerodynamic loading and the aerodynamic forcing function, including both the transverse and chordwise gust components, and the amplitude of the gusts, are investigated and quantified.


1989 ◽  
Vol 111 (4) ◽  
pp. 409-417 ◽  
Author(s):  
V. R. Capece ◽  
S. Fleeter

The fundamental flow physics of multistage blade row interactions are experimentally investigated at realistic reduced frequency values. Unique data are obtained that describe the fundamental unsteady aerodynamic interaction phenomena on the stator vanes of a three-stage axial flow research compressor. In these experiments, the effect on vane row unsteady aerodynamics of the following are investigated and quantified: (1) steady vane aerodynamic loading; (2) aerodynamic forcing function waveform, including both the chordwise and transverse gust components; (3) solidity; (4) potential interactions; and (5) isolated airfoil steady flow separation.


Author(s):  
S T Shaw ◽  
N Qin

A computational analysis is performed of the unsteady aerodynamics associated with the blade sections of helicopter rotors in forward flight. The unsteady flow is studied through solutions of the two- dimensional Reynolds averaged Navier-Stokes equations together with a strongly coupled two-equation model of turbulence. Two motions are studied. The first motion is that of an aerofoil subjected to harmonic in-plane oscillations. The influence of advance ratio and reduced frequency is investigated. It is shown that, in the absence of shock waves, the flow is periodic with a reduced frequency equal to that of the forcing motion. However, the flow development lags behind the forcing motion. Furthermore, for constant reduced frequency the phase lag is independent of advance ratio. In addition to harmonic motion, the aerodynamic response to a step change in Mach number is investigated. Using an assumed form of the response of lift coefficient to a step change in Mach number, a lift transfer operator for step changes in Mach number is obtained in the Laplace domain. An analytical expression for the response to harmonic Mach number oscillations is then obtained from the transfer operator. The resulting formulation for the aerodynamic response confirms that the lag between the forcing motion and the aerodynamic response is independent of advance ratio.


2019 ◽  
Vol 11 ◽  
pp. 175682931989060
Author(s):  
Dilek Funda Kurtulus

The present paper aims to investigate numerically small amplitude oscillation of NACA 0012 airfoil at Re = 1000. The airfoil is sinusoidally pitching around the quarter chord point with 1° pitch amplitude about a mean angle of attack. The computations are performed for mean angles of attack ranging from 0° to 60° and for pitching frequencies of 1 Hz and 4 Hz. The effect of the mean angle of attack and pitching frequency on the instantaneous forces as well as the vortex structure is investigated in comparison with the non-oscillatory conditions. It was shown that airfoil oscillations at the investigated conditions change the amplitude of oscillation of the aerodynamic loads. The instantaneous drag coefficient is always positive for pitching airfoil at 1 Hz. In the meantime, there are time intervals where instantaneous drag coefficient becomes negative for pitching motion at 4 Hz for mean angles of attack from 3° to 36°.


Author(s):  
Steven R. Manwaring ◽  
Sanford Fleeter

A series of experiments are performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained which describe the fundamental unsteady aerodynamic gust interaction phenomena on the first stage rotor blades of a research axial flow compressor generated by the wakes from the Inlet Guide Vanes. In these experiments, the effects of steady blade aerodynamic loading and the aerodynamic forcing function, including both the transverse and chordwise gust components, and the amplitude of the gusts, are investigated and quantified.


2016 ◽  
Author(s):  
Riley R. Schutt ◽  
C. H. K. Williamson

In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady dynamics of the boat and sail. Sailors use a variety of techniques to create sail dynamics which can provide an increment in thrust, increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two such techniques, “upwind leech flicking" and “downwind S-turns". We employ a two-part approach. First, on-the-water experiments are carried out using a Laser class sailboat sailed by Olympic and world championship level sailors. Data collected from an on-board GPS, IMU, anemometer, and camera array is used to generate characteristic motions of the boat and sail relative to the apparent wind. Second, laboratory experiments using the characteristic motion of the sail are run in a computer-controlled 3 degree-of-freedom (X, Y, and θ) towing tank. We use water as the working fluid. Rather than directly experiment with three-dimensional sail shapes, we represent the primary effects of the sail dynamics using rapidly prototyped two-dimensional flexible sail geometries. Shapes are based on extruded draft stripes from the upper third of the sail. The laboratory experiments approximately match the key non-dimensional parameters of the on-the-water sailing conditions, including the reduced frequency and heave-to-chord ratio. Particle Image Velocimetry and force measurements are used to analyze the flow field and thrust generated by the model sail during the dynamic motions. On-the-water testing shows that the characteristic sail motion in leech flicking is a combination of periodic heave caused by the actions of the sailor and a passive twisting of the sail due to rig flexibility. The heaving sail motions are due to rotation (roll) of the rig around the longitudinal axis of the hull. This is at an angle to the apparent wind, resulting in heave that has components both perpendicular and parallel to the oncoming wind flow. This is distinct from classical aerodynamic studies with heave purely perpendicular to the incoming flow. In laboratory experiments, the characteristic flicking motion is applied to a NACA 0012 airfoil and a 2D sail, both angled at 15 deg to the flow. Lift increases and drag decreases, leading to an overall increase in resultant driving force of the boat. The beneficial effect of this dynamic motion becomes greater as the apparent wind angle increases. In the case of leech flicking, the experiments show that the formation of vortex pairs is fundamental to the augmented thrust due to heaving. The presence of S-turns, whereby the sailor changes the boats direction simultaneous with rolling the boat, generally in the downwind direction, is also associated with vortex formation and pairing, which will be described at the conference. During downwind S-turns, large amplitude heaving motions are paired with substantial rotations of the sail caused by both adjustments of the main sheet and changes in heading. Increased velocity made good downwind is measured from the on-the-water experiments, and is associated with an increase of thrust during characteristic dynamics of the airfoil or sail shape in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document