Study of Thermal Degradation of Polymers

2013 ◽  
Vol 652-654 ◽  
pp. 1664-1667 ◽  
Author(s):  
Ivana Turekova ◽  
Zuzana Turňová ◽  
Karol Balog ◽  
Martin Pastier

This article deals with measurements of selected waste polymers in the combustion process. The technology of controlled burning occupies an important position in the process of waste disposal. Therefore it is necessary to assess the behaviour of materials in the process of thermal degradation by fire characteristics. An experiment was conducted in accordance with standard STN ISO 871: 2010 Plastics. Determination of ignition temperature using a hot-air furnace. There were studied a mass loss rate of the samples in their degradation and also monitored some products of combustion.

2013 ◽  
Vol 295-298 ◽  
pp. 471-474 ◽  
Author(s):  
Ivana Turekova ◽  
Zuzana Turňová ◽  
Peter Vekony ◽  
Martin Pastier

The article deals with determination of spontaneous ignition temperature and flash ignition temperature of polymeric materials and monitoring of mass loss rate during their degradation. An experiment was conducted in accordance with standard STN ISO 871: 2010 Plastics. Determination of ignition temperature using a hot-air furnace.


2016 ◽  
Vol 37 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Monika Kosowska-Golachowska ◽  
Agnieszka Kijo-Kleczkowska ◽  
Adam Luckos ◽  
Krzysztof Wolski ◽  
Tomasz Musiał

Abstract The objective of this study was to investigate combustion characteristics of biomass (willow, Salix viminalis) burnt in air and O2/CO2 mixtures in a circulating fluidized bed (CFB). Air and oxy-combustion characteristics of wooden biomass in CFB were supplemented by the thermogravimetric and differential thermal analyses (TGA/DTA). The results of conducted CFB and TGA tests show that the composition of the oxidizing atmosphere strongly influences the combustion process of biomass fuels. Replacing N2 in the combustion environment by CO2 caused slight delay (higher ignition temperature and lower maximum mass loss rate) in the combustion of wooden biomass. The combustion process in O2/CO2 mixtures at 30% and 40% O2 is faster and shorter than that at lower O2 concentrations.


2013 ◽  
Vol 838-841 ◽  
pp. 14-17
Author(s):  
Ivana Turekova ◽  
Zuzana Szabova ◽  
Tomas Chrebet ◽  
Jozef Harangozo

The paper reports a study of the impact of moisture and age of pellets, as well as an external condition, on the thermal degradation of the thermoplastic polyurethane elastomers. Because thermoplastic polyurethane elastomers are hydroscopic polymer, moisture will have a significant impact on thermal degradation. For determination of the effect of moisture and age were used the thermo gravimetric analysis, differential scanning calorimeter and ISO STN 871: Plastics. Determination of ignition temperature using a hot-air furnace.


1993 ◽  
Vol 139 ◽  
pp. 191-191
Author(s):  
George H. Bowen

AbstractThe large-amplitude pulsation of long-period variables, together with a number of other interacting processes and phenomena, causes a rich variety of effects on the structure and behavior of the stars. Outflowing winds result, causing extensive mass loss, with profound consequences for stellar evolution. The present status of modeling calculations for LPVs will be discussed first, with various examples. Emphasis will be given to the great importance of complex, nonlinear, time-dependent interactions between things such as the waves and atmospheric shocks that result from pulsation; non-LTE radiative transfer; non-equilibrium chemistry; the growth, changing optical properties, and dynamics of grains; and radiation pressure on both grains and molecules. I will then survey the developing implications and insights from new results and from work now in progress. Some of these concern the structure and the behavior of individual stars (e.g. determination of the pulsation mode and limiting amplitude; properties of more massive stars); some relate to the evolution of individual stars (e.g. evolution of the wind and the mass loss rate; the wind and circumstellar region during helium shell flashes; effects of the star's metallicity); and some relate to the evolution of populations of stars (e.g. the white dwarf mass distribution). All of these, and many more, offer new perspectives and new understanding concerning the character of LPVs and their role in stellar evolution.


1983 ◽  
Vol 1 (3) ◽  
pp. 191-199 ◽  
Author(s):  
C. Vovelle ◽  
R. Akrich ◽  
H. Mellottee

A comparative study of thermal degradation of painted and unpainted parti cle board specimens has been carried out. Experiments based mainly on the measurements of piloted ignition delay, mass loss rate and temperature profile have been performed using a radiative heat flux equal to 2.4 W/cm2. Thermo gravimetric analysis has complemented these measurements. It has been shown that thermal degradation of paints produces a solid residue which strongly affects exchange phenomena at the wood surface and consequently the thermal behavior of wood.


2003 ◽  
Vol 212 ◽  
pp. 218-219
Author(s):  
Julian M. Pittard ◽  
Michael F. Corcoran

We perform X-ray spectral fits to a recently obtained Chandra grating spectrum of η Carinae, one of the most massive and powerful stars in the Galaxy and which is strongly suspected to be a colliding wind binary system. The good fit that we obtain gives us further confidence in the binary hypothesis, and we find M ≈ 2.5 × 10–4 M⊙ yr–1 for the mass loss rate of η Car.


1982 ◽  
Vol 99 ◽  
pp. 197-201
Author(s):  
P.S. The ◽  
K.A. van der Hucht ◽  
M. Arens

It is shown that the mass loss rate of the WN7 star HD 93162 decreases with larger values of the ratio of total to selective extinction R. for HD 93162 the mass loss rate will change one order of magnitude, only if ΔR ∼ 2. Mass loss rates are derived for nine other WR stars of which visual, red and near-infrared photometric observations were obtained.


2007 ◽  
Vol 3 (S250) ◽  
pp. 139-144
Author(s):  
André-Nicolas Chené ◽  
Nicole St-Louis

AbstractThe most recent stellar models have shown that the faster a massive star spins, the more its nuclear yields, mass-loss rate and lifetime are different from the standard model. One thus needs to know the rotation rate of massive stars to trace their evolutionary tracks adequately. In Wolf-Rayet (WR) stars, the direct measurement of the rotational velocity is impossible, since their continuum emission is formed in the dense wind that hides the hydrostatic, stellar surface. Here, we present a technique to derive the rotation rates of WR stars from a periodic wind phenomenon, the corotating interaction regions (CIR). For five WR stars, a first estimate of the rotation rates has been deduced from the CIR periods.


2014 ◽  
Vol 1001 ◽  
pp. 379-382
Author(s):  
Jaroslav Zigo ◽  
Peter Rantuch ◽  
Karol Balog

This article deals with thermal degradation of cellulose insulation. The sample of commercially available loose-fill cellulose insulation was tested in electrically heated hot air furnace modified for thermogravimetric analysis. Weight loss, weight loss rate and CO/CO2 ratio was measured, while the sample was heated from room temperature to 530°C. Particular phases of the thermal degradation process of cellulose insulation were identified and explained. The most rapid changes caused by thermal decomposition of loose-fill cellulose insulation were reported in temperature range 270°C – 380°C. The weight loss rate reached its maximum in 308°C, which was equal to 0,198g.min-1. Two temperature ranges in which the yield of CO was higher than the yield of CO2 were detected.


Sign in / Sign up

Export Citation Format

Share Document