Transmittance Enhanced Properties of Novel Encapsulated ITO/Arc-TiO2 Antireflective TCO Substrate Prepared by RF Magnetron Sputtering

2013 ◽  
Vol 667 ◽  
pp. 573-582 ◽  
Author(s):  
Mohd Hanapiah Abdullah ◽  
Mohamad Hafiz Mamat ◽  
Mohamed Zahidi Musa ◽  
Mohamad Rusop Mahmood

In this work, a thermally stable multilayered transparent conducting oxide (TCO) utilizing TiO2 antireflection thin film (arc-TiO2) encapsulated under indium tin oxide (ITO) glass has been prepared by RF magnetron sputtering. The novel tri-functional conducting substrate with blocking layer capabilities has been designed via step-down interference coating structure of double layer antireflection coating (DLAR). The mixed-oriented type between the strongest ITO peak at (222) and a weak TiO2 peaks at (101) orientations have been observed under XRD analysis. The antireflection properties of double-layer ITO/arc-TiO2 is evidence with the existence of two maximum peaks around 410 nm and 750 nm. While, the corresponding reduction in reflectance of about 8% and 2% compared to bare ITO was achieved. The ITO/arc-TiO2 blocking layers conserves the low resistivity of ITO at 2.05 x 10-4 Ω cm, even after oxidizing during air annealing process above 400 °C. These results demonstrate that the multilayered ITO/arc-TiO2 with tailored refractive index by means of annealing treatment is a promising approach to realize a substrate which (a): electrically and thermally stable against processing temperature, (b): sustains the higher transmittance of the substrate even there is increase in total substrate thickness and (c): prevents electron recombination process occurring at the interface between the redox electrolytes and the TCO surface. The stable properties are found to be beneficial for use as TCOs in DSSCs.

2021 ◽  
Vol 63 (3) ◽  
pp. 245-252
Author(s):  
Emine Başalan ◽  
Mustafa Erol ◽  
Orkut Sancakoğlu ◽  
Tuncay Dikici ◽  
Erdal Çelik

Abstract Titanium thin films were deposited on glass and indium tin oxide (ITO) coated glass substrates by radio-frequency (RF) magnetron sputtering under varying sputtering parameters as: power, pressure, substrate temperature and target-substrate distance. The crystalline structure, crystallite size and texture coefficients of the films were evaluated in detail. As the evaluation points out, 100 W, 1.33 Pa ambient temperature and 70 mm were determined as the optimum sputtering parameters for intended crystalline structures. Subsequently, electrochemical anodization experiments were performed via varied electrolytes and under various anodization parameters (voltage, time and electrolyte type) in a two-electrode electrochemical cell using the films obtained through the optimized sputtering parameters. The anodized samples were annealed at 450 °C for 1 h in air in order to obtain anatase transformation and the desired crystalline structure. The surface morphologies and the crystalline structures of the anodized films were evaluated through x-ray diffractometer (XRD) and scanning electron microscope (SEM), respectively. Finally, the anodization parameters for the formation of TiO2 nanotube arrays were determined as: 35 V and 35 min. in an electrolyte composed of 0.3 wt.-% NH4F – 2 wt.-% water – ethylene glycol.


2001 ◽  
Vol 40 (Part 1, No. 5A) ◽  
pp. 3364-3369 ◽  
Author(s):  
Wenli Deng ◽  
Taizo Ohgi ◽  
Hitoshi Nejo ◽  
Daisuke Fujita

2013 ◽  
Vol 832 ◽  
pp. 281-285
Author(s):  
S. Najwa ◽  
A. Shuhaimi ◽  
N. Ameera ◽  
K.M. Hakim ◽  
M. Sobri ◽  
...  

Indium tin oxide was prepared using RF magnetron sputtering at different substrate temperature. The morphological and electrical properties were investigated. Morphological properties were observed by atomic force microscopy. Electrical properties were measured using standard two-point probe measurements. The result shows that the average roughness and peak to valley value are highest at high substrate temperature. The watershed analysis shows that the total grain boundaries are highest at the substrate temperature of 200°C. The lowest resistivity value of 9.57×10-5 Ωcm is obtained from ITO nanocolumn deposited at substrate temperature of 200°C. The improvement of morphological and electrical properties as transparent conducting oxide was observed from ITO nanocolumn deposited at substrate temperature of 200°C.


2011 ◽  
Vol 2-3 ◽  
pp. 167-171
Author(s):  
Shao Ni Sun ◽  
Li Yang Xie ◽  
Yi Chen Zhang ◽  
Ying Huang

The Ta2O5/SiO2 Multi-layer Antireflection Coating Is Prepared on K9 Glass by RF Magnetron Sputtering Technology in the Experiment. the Growth Parameters Are Changed to Get Multi-layer Antireflection Film with Good Optical Properties. in the Technical Research, the Influence of Various Growth Parameters, Including Working Pressure, Oxygen Content, Substrate Temperature, Etc., on the Optical Properties and Structures of the Coatings Are Studied. Optical Properties and Morphological Features such as Surface, Structure Are Investigated by UV-VIS Spectrophotometer and AFM, Respectively. the Detecting Results Further Verify the Important Influences of Proper Growth Parameters on Optical Properties of Antireflection Coating.


2012 ◽  
Vol 8 (6) ◽  
pp. 460-463 ◽  
Author(s):  
Shi-na Li ◽  
Rui-xin Ma ◽  
Liang-wei He ◽  
Yu-qin Xiao ◽  
Jun-gang Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document