The Effect of Double-Element Doping on the Photocatalytic Property of Nano-TiO2

2013 ◽  
Vol 669 ◽  
pp. 371-376
Author(s):  
Su Huang ◽  
Fu Yun Li ◽  
Yang Li ◽  
Li Zhen Yang

Sol-gel method was applied to synthesize nano-TiO2 particles doped with metal and non-metallic elements. Nano-TiO2 particles were doped at different calcinations’ temperatures with S and Fe, Ce and La, respectively. A comparison was performed on the effect of different metallic elements on nano-TiO2 particles doped with the same non-metallic element S. X-ray diffraction results indicated that the diameter of doped nano-TiO2 particle was smaller than that of non-doped nano-TiO2 particles. The minimum diameter of nano-TiO2 doped with Ce and S was about 8nm, while that of nano-TiO2 doped with La and S was about 9nm. The minimum diameter of nano-TiO2 particles doped with Fe and S was about 10nm. In addition, with the increase of calcinations’ temperature, the size of nano-TiO2 particle increased. All nano-TiO2 particles doped with double elements were antae. Methyl orange was used to simulate the pollutant to analyze the photocatalytic property of doped nano-TiO2. The results indicated that the doped element had some effect on the photocatalytic property of nano-TiO2, and varied for different doped metallic elements. Among them, the degradation rate of methyl orange by nano-TiO2 doped with La and S under the calcinations’ temperature of 550 °C reached 28.97%.

2013 ◽  
Vol 798-799 ◽  
pp. 25-29
Author(s):  
Su Huang ◽  
Li Zhen Yang ◽  
Fu Yun Li

Hydro-thermal method was applied to synthesize nanoTiO2particles doped with metal and non-metallic elements. nanoTiO2particles were doped at different calcinations temperatures with S and Fe, Ce and La, respectively. X-ray diffraction results indicated that the minimum diameter of nanoTiO2doped with Ce and S was about 7.2nm, which is smaller than other type of double-element doped nanoTiO2. In addition, with the increase of calcinations temperature, the size of nanoTiO2particle increased and the diameter of nanoTiO2doped with Fe and S was the most obvious one. Rhodamine B was used to simulate the pollutant to analyze the photocatalytic property of doped nanoTiO2. The results indicated that the degradation rate of rhodamine B by nanoTiO2doped with La and S under the calcinations temperature of 450 °C reached66.22%.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


2012 ◽  
Vol 518-523 ◽  
pp. 775-779 ◽  
Author(s):  
Dong Dong Tan ◽  
De Fu Bi ◽  
Peng Hui Shi ◽  
Shi Hong Xu

The TiO2/NiFe2O4 (TN) composite nanoparticles with different mass ratios of NiFe2O4 to TiO2 were prepared via sol-gel method. X-ray diffraction was used to characterize the phase structure of TN. The results indicated that adulterating a smidgen of NiFe2O4 into the TiO2 (about 0.1%) can promote the phase transformation of TiO2, however, when the doping amount of NiFe2O4 surpasses 1%, the introduction of NiFe2O4 can inhibit the growth of TiO2 crystal grain and reduce the size of TiO2 crystal grain. The degradation experiment of methyl orange solution under UV illumination (253.7 nm) showed that the content of NiFe2O4 in the TN was higher, the photocatalytic activity of TN was worse, and the 0.1% TiO2/NiFe2O4 calcined at 400 °C presented the best photocatalytic activity.


2021 ◽  
Author(s):  
Xianzhen Diao ◽  
Jin XU ◽  
Yufei WANG

Nanometer TiO2 photocatalysts were prepared by the sol–gel method. The catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, ultraviolet-visible spectroscopy, and other techniques. Methyl orange solution was used for the degradation of the organic material and ultrasonic technology was used to determine the photocatalytic performance of the catalysts. The results show that the photocatalytic performance of the Ni-N-TiO2 is clearly improved under ultrasonic conditions. The TiO2 photocatalytic degradation effect is optimal at a catalyst concentration of 0.3 g/L, an initial concentration of the organic matter of 0.03 mmol/L, a nickel-doping amount of 2 mol %, and a nitrogen-doping amount of 15 mol %. The use of ultrasound technology in combination with photocatalysis has a positive effect and results in a TiO2 degradation rate of methyl orange of 95 % after 3 h.


2019 ◽  
Vol 13 (26) ◽  
pp. 171-177
Author(s):  
Ban M. Al-Shabander

Titanium dioxide nanorods have been prepared by sol-gel templatemethod. The structural and surface morphology of the TiO2 nanorods wasinvestigated by X-ray diffraction (XRD) and atomic force microscopy(AFM), it was found that the nanorods produced were anatase TiO2 phase.The photocatalytic activity of the TiO2 nanorods was evaluated by thephoto degradation of methyl orange (MO). The relatively higherdegradation efficiency for MO (D%=78.2) was obtained after 6h of exposedto UV irradiation.


2017 ◽  
Vol 264 ◽  
pp. 211-214 ◽  
Author(s):  
Farah Iddayu Abu Bakar ◽  
Katerina Anak Birang ◽  
Mohd Azam Mohd Adnan ◽  
Jeefferie Abd Razak ◽  
Syahriza Ismail

The formation of cobalt (Co) doped zinc oxide (ZnO) as photocatalyst for photodegradation of methyl orange dye was investigated. The ZnO photocatalyst was produced with different concentration of Co by using sol gel method. The hexagonal wurtzite and zincite structure were successfully formed through this method. The morphological observation of nanorod and nanodisk structure formed was done by Field Emission Scanning Electron Microscope (FESEM). While, the structural properties of Co doped ZnO were identified by X-ray Diffraction (XRD) and Raman spectroscopy. The degradation performance of methyl orange was assessed and performance of photocatalytic activity was correlated to the amount of dopant level and oxygen vacancy of photocatalyst. There is an optimum amount of Co that can be doped into ZnO nanostructure in order to provide better degradation of methyl orange.


2012 ◽  
Vol 66 (3) ◽  
Author(s):  
Khaled Haouemi ◽  
Fathi Touati ◽  
Néji Gharbi

AbstractTiO2 nanoparticles with different shapes and sizes were synthesised by the sol-gel route in Water/Brij78/Hexane reverse microemulsions. The aqueous cores of these microemulsions were used as nanoreactors to control sol-gel reactions. We studied the effect of water/surfactant mole ratio (W 0) on the morphology, and textural properties of the final products. The materials thus obtained were characterised by different techniques. Thermogravimetric and differential thermal analysis (TG-DTA) was used to study the thermal behaviour of the products and X-ray diffraction (XRD) to identify the crystalline phases. The morphological and textural properties of the products were determined by scattering electron microscopy (SEM) and the Brunauer-Emmett-Teller (BET) method, respectively. We also studied the influence of thermal treatment on the structure and size of the TiO2 particles. The effect of W 0 on the anatase-rutile phase transition temperature was investigated.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 345-351
Author(s):  
Yunjuan Liu ◽  
Xiaohong Yuan ◽  
Yan Wang

Abstract Nano-TiO2 film attracts great attention by its excellent photocatalytic activity performance. The application of nano-TiO2 film based on fabric substrate in indoor household textiles is helpful for purifying air and degrading formaldehyde content in indoor environments. In this paper, the nano-TiO2 films were prepared on fiberglass substrate by the sol-gel method, and the appearance of fabrics coated with nano-TiO2 at conditions of both without calcination (room temperature) and high temperature calcination (300∘C, 350∘C, 400∘C) was studied. In addition, X-ray diffraction technology was applied to analyze the crystallization of TiO2 film, with further discussion of the photocatalytic performance of degrading helianthin under UV irradiation.The results show that with increase of calcination temperature, the color of the fabric gets darker and darker until the powder peeling and dyeing reaches the maximum degree, the fabric becomes fragile, the anatase crystal form of TiO2 film tends to be complete, and the photocatalytic performance is improved. It is feasible to apply TiO2 film on the surface of fabrics in the design of indoor household textiles.


2019 ◽  
Vol 118 ◽  
pp. 01005
Author(s):  
Ying-ying Li ◽  
Jin-zhou Li ◽  
Yong-chun Liu

A series of La1-xCexNiO3 photocatalysts with different content of cerium element have been synthesized by sol-gel method. The as-prepared products were characterized by powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic activities of these La1-xCexNiO3 composites under visible-light irradiation were evaluated by the degradation of methyl orange (MO). The effect of important operational parameters such as catalyst amount, reaction temperature, irradiation time, and comparison of photocatalytic activity with different dyes including methyl orange, alizarin red, alizarin yellow, xylenol orange were also studied. The results revealed that the La0.8Ce0.2NiO3 (LCNO) composites exhibited much higher photocatalytic activities than pure LaNiO3 (LNO).


2012 ◽  
Vol 549 ◽  
pp. 584-588
Author(s):  
Qing Li ◽  
Rui Zhi Wen

Nano-TiO2 photocatalyst powders were prepared through the sol-gel method and supercritical fluid drying(SCFD). The TG-DTA、XRD、particle size distribution technique、SEM were used to characterize the hyperfine TiO2 particles.The lanthanum-doped TiO2 with different mass percentage of La3+ were compared with pure TiO2 when used as photocatalyst in degradation of methyl orange. The best catalytic activity was observed with 0.02(mol)%La-TiO2. Photocatalytic efficiency of the 0.02(mol)%La- TiO2 is improved by 30.79% comparing to pure TiO2.


Sign in / Sign up

Export Citation Format

Share Document