Study on Crack Spacing and Width of Expansive Soil due to Evaporation

2013 ◽  
Vol 690-693 ◽  
pp. 728-733 ◽  
Author(s):  
Jun Hua Wu ◽  
Song Yang

The expressions of crack spacing and width were deduced from the aspect of force-balance. The concept of maximum spacing and width of crack were put forward accordingly and they were verified and consistent with the site test results. Their relationships with soil parameters were discussed in detail. The new cracks do not appear until the spacing of adjacent cracks is greater than the maximum spacing, and the width of cracks will not be greater than the maximum width. The maximum spacing and width are judgments for describing and represent the final characteristic of cracks due to evaporation.

2013 ◽  
Vol 19 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Zhiqing Li ◽  
Chuan Tang ◽  
Ruilin Hu ◽  
Yingxin Zhou

According to Mengzi expansive soil, consolidated drained tests and undrained tests are carried on under saturated and remoulded conditions. The stress-strain characteristics of saturated soil are researched systematically under different confining pressure, initial dry density, initial water content, shearing rate and drainage condition. The inherent unity of diversity of shearing strength for the same samples measured by different experimental methods is indicated according to the normalization of critical state test results. And the failure lines in p ‘- q - ν space of remoulded saturated expansive soil under consolidated drained and undrained conditions are attained. The hyperbolic curve model can fit well the weak hardening stress-strain curves and the exponential curve model can fit the weak softening stress-strain curves. The test results can provide technical parameters and theoretical help for shearing strength variation of slope during rainfall and strength state of soil structure in normal water level.


2011 ◽  
Vol 2-3 ◽  
pp. 785-790
Author(s):  
Jong Hyen Baek ◽  
Yong Kyu Kim ◽  
Jae Ho Lee ◽  
Hyen Jung Jo

For the purpose of improving the future domestic train control systems and securing interoperability, according to the global development trends of train control systems, it is presented that the test results of interoperability between wayside train control systems installed in existed line, and the onboard train control system. Due to the safety-critical characteristics of train systems, the site test in the section where the wayside equipment is installed may lead to a danger against safety. Therefore, by way of constructing a simulation environment of train control systems, the T/R data systems of the equipment for interoperability are confirmed and the interoperability test are obtained by applying these systems to onboard equipment.


1990 ◽  
Vol 27 (5) ◽  
pp. 531-545 ◽  
Author(s):  
D. T. Bergado ◽  
K. C. Chong ◽  
P. A. M. Daria ◽  
M. C. Alfaro

This study centred on the performance of the screw plate test (SPLT) to determine the deformability and consolidation characteristics of soft Bangkok clay. For comparison, a series of stress-path-controlled triaxial consolidation tests (tri) were carried out on good quality samples of Bangkok clay taken from the same testing sites and imposed with the same loading conditions as the screw plate tests. Undrained and drained moduli and coefficients of consolidation were obtained from the stress-path-controlled triaxial consolidation tests and were compared with the corresponding values of the screw plate test. In addition, the ultimate bearing capacity was derived from the pressure–deformation relationships of the screw plate test results. A graphical method was used to compute the coefficient of consolidation from the screw plate tests and from stress-path-controlled triaxial consolidation test results. The compressibility data were also obtained from conventional oedometer tests (oed). Both cv (SPLT)/cv (tri) and cv (SPLT)/cv(oed) ratios compared favorably with the cv (field)/cv (laboratory) ratio obtained from past investigations. The data from pressure–settlement–time relationships of the screw plate tests were used to successfully predict values that compared favorably with the measured values at each stress level. The pressure–deformation–time relationship from stress-path-controlled triaxial consolidation tests were also evaluated, and they indicated behaviour similar to that of the screw plate test results. Soil parameters obtained from screw plate tests were subsequently used to predict the settlement of two test embankments, giving fairly close agreement with the observed values. Key words: soft clay, settlement, deformation, consolidation, screw plate test, triaxial test, embankment, prediction, stress path.


2020 ◽  
Vol 22 (2) ◽  
pp. 149-155
Author(s):  
Iskandar ◽  
Rabiya

Soil consolidation testing using an oedometer and rowe cell. Oedometers are often used on clay and soft soils. However, in the development of the rowe cell device, the results of lowering soft soil were better than the oedometer. The advantage of this rowe cell is that it can determine the saturation value of the soil samples tested. The rowe cell tester can measure the pore water pressure at the beginning and end of each consolidation stage. This rowe cell can provide suitable settlement for soft soils. This consolidation test to obtain soil parameters such as Cv and Cc by using the rowe cell tool. After that, from the test results, the two tools were compared.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Sheng-quan Zhou ◽  
Da-wei Zhou ◽  
Yong-fei Zhang ◽  
Wei-jian Wang ◽  
Dongwei Li

To probe into the dynamic mechanical properties of expansive soil stabilized by fly ash and lime under impact load, the split-Hopkinson pressure bar (SHPB) test was carried out in this study. An analysis was made on the dynamic mechanical property and final fracture morphology of stabilized soil, and the failure mechanism was also explored from the perspective of energy dissipation. According to the test results, under the impact pressure of 0.2 MPa, plain soil and pure fly ash-stabilized soil exhibit strong plasticity. After the addition of lime, the stabilized soil shows obvious brittle failure. The dynamic compressive strength and absorbed energy of stabilized soil first increase and then decrease with the change of mix proportions. Both the dynamic compressive strength and the absorbed energy reach the peak value at the content of 20% fly ash and 5% lime (20% F + 5% L). In the process of the test, most of the incident energy is reflected back to the incident bar. The absorbed energy of stabilized soil increases linearly with the rise of dynamic compressive strength, while the absorbed energy is negatively correlated with the fractal dimension. The fractal dimension of pore morphology of the plain soil is lower than that of the fly ash-lime combined stabilized soil when it comes to the two different magnification ratios. The test results indicate that the modifier content of 20% F + 5% L can significantly improve the dynamic mechanical properties of the expansive soil.


2015 ◽  
Vol 773-774 ◽  
pp. 1518-1523 ◽  
Author(s):  
Aminaton Marto ◽  
Mohsen Oghabi ◽  
Nor Zurairahetty Mohd Yunus

Bearing capacity and settlement are two important parameters in geotechnical engineering. The bearing capacity of circular foundations on sandy soils is important to geotechnical practicing engineers. Design of foundations includes soil parameters and bearing capacity of foundation. This paper presents the results of laboratory experimental model tests of circular footings supported on sand deposit under static load. The finite element software Abaqus is used to compare the results. The effects of the relative density of the sand (30%, 50%, and 70%) and the diameter of circular footing (75 mm and 100 mm) are investigated. It can be concluded that the experimental test results fit quite well with the results of numerical method.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Jin Liu ◽  
Yong Wang ◽  
Yi Lu ◽  
Qiao Feng ◽  
Faming Zhang ◽  
...  

Polyvinyl acetate constitutes a class of polymers that can entirely dissolve in water to form a solution. In this study, polyvinyl acetate as a nontraditional chemical stabilizer was used in soil improvement. Laboratory tests were carried out to evaluate the effect of polyvinyl acetate on swelling-shrinkage properties of expansive soil. A series of shrink/swell tests were performed with adding polyvinyl acetate as amendment at a concentration 3 g/cm3 to four aggregate sizes in the range of 0–0.5 mm, 0.5–1 mm, 1-2 mm, and 2–5 mm and five concentrations 1.5 g/cm3, 3 g/cm3, 4.5 g/cm3, 6 g/cm3, and 9 g/cm3 to soils with aggregate size in the range of 0.5–1 mm for comparison of results with those of untreated soils. The results show that all the linear swelling ratio (LSWR) and linear shrinkage ratio (LSHR) values of the treated specimens decrease. SEM images and the test results indicate the achieved reduction in volume change of the soil tested using soil pore filling and particle encapsulation.


Author(s):  
Murat Tonaroglu ◽  
Cem Akguner ◽  
Murat E. Selcuk

Prediction of long term settlement of soft soils below civil engineering structures is an important issue in geotechnical engineering. The data from laboratory consolidation tests are used to estimate the ultimate settlement and problems arise in predicting settlement-time behavior in the field. In order to overcome this difficulty some empirical models or adjustments have been proposed based on field settlement measurements, even if they are available at least for the early stages of loading. In this study, laboratory test results and field settlement measurements obtained for the long term settlement of clayey layers underlying the Alibey Dam in Istanbul, Turkey are used in conjunction with a model proposed by Edil and Mochtar (1984) for peat-like soils. The soil parameters of the proposed model have independently been obtained using both laboratory test data and field measurements, and model predictions are compared with actual recorded settlements. It is observed that the field measurements could be predicted more closely if the model parameters are obtained from field measurements, but predictions based on laboratory consolidation and creep test results also provide satisfactory results following the initial stages of loading.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wenwei Li ◽  
Baotian Wang ◽  
Jinyu Zuo ◽  
Bingsheng Zhou ◽  
Haixia Zhang

Based on the characteristics of an expansive soil slope, the slip mass can be simplified to a simpler model with three-broken line rigid bodies. A solution was formulated to calculate the safety factors of the slope, and the results are similar to those based on the strength reduction method. However, similar to conventional methods to analyze the stability of slopes, the deterministic method to obtain the safety factors only calculates the safety factor using deterministic values without considering the randomness of soil parameters, which leads to unstable results. To improve the rationality of the calculated results, this paper aims to construct a reliability analysis method based on the simplified three-broken line model of a landslide. The reliability is calculated with the response surface method in a spreadsheet with efficiency and convenience. The designed program considers the changes in the strength of the shallow soil and the depth of the strongly weathered layer for different stages of the wetting-drying cycles and solves for the probability of failure of the sliding surface at the interface between the strong and weak weathered layers. Considering an expansive soil slope as an example, the reliability of the slope was analyzed based on laboratory test data and the proposed formula. The results show that multiple wetting-drying cycles significantly increase the probability of failure of an expansive soil slope and that the slope typically becomes unstable after six wetting-drying cycles. Slope cutting helps alleviate the adverse effects of wetting-drying cycles.


Sign in / Sign up

Export Citation Format

Share Document