Simulation of Gold Nanoparticles Aggravating MEMS Cantilever Optical Static Detection Biochip

2013 ◽  
Vol 694-697 ◽  
pp. 966-970 ◽  
Author(s):  
Yue Tao Ge ◽  
Xiao Tong Yin

A kind of gene detection biochip model based on biological micro electro mechanical systems (BioMEMS) technology and micro optical electro mechanical systems (MOEMS) technology is designed and simulated. In order to detect whether there are nucleic acid components in the testing samples, the biochip in this study issues horizontal light by laser, then receives and reads the deformation signals of MEMS cantilever by optical detector. The MEMS optical reflecting system can amplify MEMS cantilever deformation signal 22 times by micro reflectors which are set on the side wall of the cantilever free end. In order to improve optical detection sensitivity, gold nanoparticles (GNPs) which are combined with hybridization information is taken to aggravate MEMS cantilever, and employ Au - S chemical bond of GNPs and dithiol HS(CH2)6SH to combine and fix DNA probe, and then employ target DNA which is marked with biotin to combine GNPs by Biotin - Streptavidin combining. The simulation results show that this biochip can detect biological samples fast, high throughput, low cost, high sensitivity and reliably.

2010 ◽  
Vol 159 ◽  
pp. 429-433 ◽  
Author(s):  
Zhong Liang Deng ◽  
Yue Tao Ge ◽  
Wei Guo Guan ◽  
Nai Bo Zhang ◽  
Qi Ke Cao

A kind of array micro-electromechanical systems (MEMS) cantilever of biochip is designed, which integrated capacitive pressure sensor. Before and after hybridization reaction, by the change of capacitance value, it can measure the capacitance values through integrated circuit (IC) to judge whether the solution containing the cantilever probe genes. In order to improve the detection sensitivity, it aggravate cantilever by gold nanoparticles combining hybridization information, applying Au-S chemical bond of gold nanoparticles and dithiol HS(CH2)6SH to combine and fix DNA probes and applying target DNA marked with biotin to combine gold nanoparticles by Biotin - Streptavidin combining. The results shows that this biochip can detect biological samples fast, high throughput, low cost, high sensitivity and reliably.


2010 ◽  
Vol 39 ◽  
pp. 198-202 ◽  
Author(s):  
Zhong Liang Deng ◽  
Yue Tao Ge ◽  
Wei Guo Guan ◽  
Nai Bo Zhang ◽  
Qi Ke Cao

A kind of array micro-electromechanical systems (MEMS) cantilever of biochip is designed, which piezoelectric devices drive MEMS cantilever resonance. Before and after hybridization reaction, by the change of the resonant frequency of the cantilever, it can detect the cantilever amplitude through optical detector to judge whether the solution containing the cantilever probe genes. In order to improve detection sensitivity, it aggravate cantilever by gold nanoparticles combining hybridization information, applying Au-S chemical bond of gold nanoparticles and dithiol HS(CH2)6SH to combine and fix DNA probe and applying target DNA marked with biotin to combine gold nanoparticles by Biotin - Streptavidin combining. The results shows that this biochip can detect biological samples fast, high throughput, low cost, high sensitivity and reliably.


2014 ◽  
Vol 68 (5) ◽  
pp. 629-641 ◽  
Author(s):  
Tatjana Djakov ◽  
Ivanka Popovic ◽  
Ljubinka Rajakovic

Micro-electro-mechanical systems (MEMS) are miniturized devices that can sense the environment, process and analyze information, and respond with a variety of mechanical and electrical actuators. MEMS consists of mechanical elements, sensors, actuators, electrical and electronics devices on a common silicon substrate. Micro-electro-mechanical systems are becoming a vital technology for modern society. Some of the advantages of MEMS devices are: very small size, very low power consumption, low cost, easy to integrate into systems or modify, small thermal constant, high resistance to vibration, shock and radiation, batch fabricated in large arrays, improved thermal expansion tolerance. MEMS technology is increasingly penetrating into our lives and improving quality of life, similar to what we experienced in the microelectronics revolution. Commercial opportunities for MEMS are rapidly growing in broad application areas, including biomedical, telecommunication, security, entertainment, aerospace, and more in both the consumer and industrial sectors on a global scale. As a breakthrough technology, MEMS is building synergy between previously unrelated fields such as biology and microelectronics. Many new MEMS and nanotechnology applications will emerge, expanding beyond that which is currently identified or known. MEMS are definitely technology for 21st century.


2019 ◽  
Vol 894 ◽  
pp. 1-8
Author(s):  
Khanh Duong Quang ◽  
Huong Vuong Thi ◽  
Anh Luu Van

Multi-axial mechanical systems commonly encounter the problem of vibration while attempting to drive machining systems at high speed. Many effective methods based on feed-forward and feedback control have been proposed and applied for vibration reduction. In order to design controllers all methods require the exact knowledge of system parameters: vibration frequency and damping ratio. In recent years, low-cost Micro Electro Mechanical Systems (MEMS) accelerometers have been used for many applications in industry. This paper presents the advantage of low cost MEMS accelerometer to identify vibration parameters of mechanical systems in comparison to conventional expensive devices.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1423
Author(s):  
Zhen Gu ◽  
Jing-Jing Luo ◽  
Le-Wei Ding ◽  
Bing-Yong Yan ◽  
Jia-Le Zhou ◽  
...  

Digital microfluidic (DMF) has been a unique tool for manipulating micro-droplets with high flexibility and accuracy. To extend the application of DMF for automatic and in-site detection, it is promising to introduce colorimetric sensing based on gold nanoparticles (AuNPs), which have advantages including high sensitivity, label-free, biocompatibility, and easy surface modification. However, there is still a lack of studies for investigating the movement and stability of AuNPs for in-site detection on the electrowetting-based digital microfluidics. Herein, to demonstrate the ability of DMF for colorimetric sensing with AuNPs, we investigated the electrowetting property of the AuNPs droplets on the hydrophobic interface of the DMF chip and examined the stability of the AuNPs on DMF as well as the influence of evaporation to the colorimetric sensing. As a result, we found that the electrowetting of AuNPs fits to a modified Young–Lippmann equation, which suggests that a higher voltage is required to actuate AuNPs droplets compared with actuating water droplets. Moreover, the stability of AuNPs was maintained during the processing of electrowetting. We also proved that the evaporation of droplets has a limited influence on the detections that last several minutes. Finally, a model experiment for the detection of Hg2+ was carried out with similar results to the detections in bulk solution. The proposed method can be further extended to a wide range of AuNPs-based detection for label-free, automatic, and low-cost detection of small molecules, biomarkers, and metal ions.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 953
Author(s):  
Catarina R. F. Caneira ◽  
Denis R. Santos ◽  
Virginia Chu ◽  
João P. Conde

Nanoporous microbead-based microfluidic systems for biosensing applications allow enhanced sensitivities, while being low cost and amenable for miniaturization. The regeneration of the microfluidic biosensing system results in a further decrease in costs while the integration of on-chip signal transduction enhances portability. Here, we present a regenerable bead-based microfluidic device, with integrated thin-film photodiodes, for real-time monitoring of molecular recognition between a target DNA and complementary DNA (cDNA). High-sensitivity assay cycles could be performed without significant loss of probe DNA density and activity, demonstrating the potential for reusability, portability and reproducibility of the system.


Nanomedicine ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 325-335
Author(s):  
Li Gao ◽  
Wenwen Xiang ◽  
Zebin Deng ◽  
Keqing Shi ◽  
Huixing Wang ◽  
...  

Aim: The current work highlighted a novel colorimetric sensor based on aptamer and molybdenum disulfide (MoS2)-gold nanoparticles (AuNPs) that was developed for cocaine detection with high sensitivity. Materials & methods: Due to the presence of the plasmon resonance band on the surface of AuNPs, AuNPs aggregated and the color was changed from red to blue after adding a certain concentration of NaCl. We used MoS2 to optimize the sensing system of AuNPs. The folded conformation of the aptamer in combination with cocaine enhanced the salt tolerance of the MoS2-AuNPs, effectively preventing their aggregation. Results & conclusion: The detection limit of cocaine was 7.49 nM with good selectivity. The method based on MoS2-AuNPs colorimetry sensor is simple, quick, label-free and low cost.


Biosensors ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 78
Author(s):  
Dezhi Feng ◽  
Jing Su ◽  
Guifang He ◽  
Yi Xu ◽  
Chenguang Wang ◽  
...  

BRCA1 is the biomarker for the early diagnosis of breast cancer. Detection of BRCA1 has great significance for the genetic analysis, early diagnosis and clinical treatment of breast cancer. In this work, we developed a simple electrochemical DNA sensor based on a DNA tetrahedral-structured probe (TSP) and poly-adenine (polyA) mediated gold nanoparticles (AuNPs) for the sensitive detection of BRCA1. A thiol-modified TSP was used as the scaffold on the surface of the screen-printed AuNPs electrode. The capture DNA (TSP) and reporter DNA were hybridized to the target DNA (BRCA1), respectively, to form the typical sandwich system. The nanocomposites of reporter DNA (polyA at the 5′ end) combined with AuNPs were employed for signal amplification which can capture multiple enzymes by the specificity between biotin and streptavidin. Measurements were completed in the electrochemical workstation by cyclic voltammetry and amperometry and we obtained the low limit of detection of 0.1 fM with the linear range from 1 fM to 1 nM. High sensitivity and good specificity of the proposed electrochemical DNA sensor showed potential applications in clinical early diagnosis for breast cancer.


Sign in / Sign up

Export Citation Format

Share Document