Modeling of Phase Transformation for TA15 Titanium Alloy During Heat Treatment

2013 ◽  
Vol 706-708 ◽  
pp. 148-151
Author(s):  
Hui Jun Zhao ◽  
Bao Yu Wang ◽  
Jian Guo Lin ◽  
Lei Yang

In this paper a phase transformation model with the temperature has been used to predict the percentage of phase at different temperature for TA15 titanium alloy during heat treatment. Heat treatment tests were conducted on TA15 samples at different temperatures ranging from 850°C to 1000°C. The material parameters were determined by using the test results and an Evolutionary Programming (EP)-based optimization method. Good agreements between the experimental and computed results were obtained.

2021 ◽  
Vol 1016 ◽  
pp. 906-910
Author(s):  
Xin Hua Min ◽  
Cheng Jin

In this paper,effect of the different forging processes on the microstructure and mechanical properties of the flat flat billets of TA15 titanium alloy was investigated.The flat billiets of 80 mm×150 mm×L sizes of TA15 titanium alloy are produced by four different forging processes.Then the different microstrure and properties of the flat billiets were obtained by heat treatment of 800 °C~850 °C×1 h~4h.The results show that, adopting the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling, the primary αphases content is just 10%, and there are lots of thin aciculate phases on the base. This microstructure has both high strength at room temperature and high temperature, while the properties between the cross and lengthwise directions are just the same. So the hot processing of the first forging temperature at T1 °C、slow cooling and the second forging temperature at T2°C 、quick cooling is choosed as the ideal processing for production of aircraft frame parts.


2009 ◽  
Vol 614 ◽  
pp. 55-59
Author(s):  
Fan Tao Kong ◽  
Yu Yong Chen

Effects of heat treatment on the microstructure of as-cast and as-forged Ti-45Al-5Nb-0.3Y alloy are discussed. The as-cast Ti-45Al-5Nb-0.3Y alloy exhibits a microstructure consisting of fine equiaxed grains which average size is almost 100μm. Phase transformation of as-cast Ti-45Al-5Nb-0.3Y alloy greatly depends upon cooling rate. During furnace cooling, the alloy transform to fully lamellar microstructure. During air cooling, massive transformation predominates. During oil cooling, extremely fine fully lamellar microstructure is formed. During water cooling, ordering α2 phases are primary. Thermo-mechanical treatments, through combined action of hot canned forging and heat treatment, were performed on a Ti-45Al-5Nb-0.3Y alloy to investigate their effect on the microstructure of the alloy. The as-forged Ti-45Al-5Nb-0.3Y alloy is comprised of a large number of dynamic recrystallization (DRX) γ grains, curved and broken lamellae, and a small amount of remnant lamellae. And three different microstructures, duplex (DP), nearly lamellar (NL) and fine fully lamellar (FFL), have been obtained through heat treatment at different temperatures (1320-1370°C), respectively.


2018 ◽  
Vol 227 ◽  
pp. 01005
Author(s):  
Guanfang Zhu ◽  
Chunwang Li ◽  
Zhongping Zhang

To carry out numerical simulation of TC4 titanium alloy blade impacted by foreign objects effectively, this paper takes the test results of steel ball and sandstone impacting titanium alloy flat blade inlet and blade surface as the benchmark, and uses ANSYS/LS-DYNA software to adopt kinematic hardening plasticity model to simulates the impact results and inverts the contact stiffness factor and the other three parameters were obtained by the way of inversion reasoning.


2010 ◽  
Vol 105-106 ◽  
pp. 115-118 ◽  
Author(s):  
Qi Hong Wei ◽  
Chong Hai Wang ◽  
Zhi Qiang Cheng ◽  
Ling Li ◽  
Hong Sheng Wang ◽  
...  

In this paper, XRD was engaged in studying phase transformation of quartz fibers, SEM was engaged in studying the surface micromorphology of quartz fibers heat treated at different temperatures, and the tensile strength was measured by a single fiber strength electronics instrument. The results indicate that surface infiltration agent have been iliminated after heat treatment at 500°C, and the tensile strength decreaced significantly. The higher the temperature was, the more the tensile strength decreaced. There were no significant phase transformation and no crystallization heat treatmented at 500~800°C. But there were some round and strip bulges, and scap defects on the surface. With temperature increasing,some scab defects and bulges began to flake off, and some new rifts and cracks were formed. This was one of the important factors that decreaced tensile strength markedly.


2011 ◽  
Vol 311-313 ◽  
pp. 283-286 ◽  
Author(s):  
R. Khorshidi ◽  
A. Honarbakhsh Raouf ◽  
M. Emamy ◽  
H.R. Jafari Nodooshan

The effect of different solution temperatures has been investigated on the tensile properties of Na-modified Al-Mg2Si in situ composite specimens which were subjected to solutionizing at different temperatures of 480 °C, 500 °C and 520 °C for holding time of 4 h followed by quenching. Tensile test results indicated that elongation value gradually increases upon solution treatment whereas ultimate tensile strength (UTS) reduces. The results of solution treatment also showed that the highest quality index is achieved in 500 °C (354 MPa) and so it is revealed optimum solutionizing temperature level (500 °C) for improving tensile properties.


2020 ◽  
Vol 321 ◽  
pp. 11029
Author(s):  
Yangyang Sun ◽  
Hui Chang ◽  
Zhigang Fang ◽  
Yuecheng Dong ◽  
Zhenhua Dan ◽  
...  

Microstructure evolution and mechanical properties of low cost Ti-2Fe-0.1B alloy under different heat treatment were studied. Results indicated that two kinds of equiaxed microstructures with different characteristics were obtained in conventional and double annealing, and typical lamellar microstructure was obtained in β annealing. Tensile test results shown that as-received rolled alloy possess highest strength and plasticity simultaneously due to fine and entangled microstructure. Uniform equiaxed dimples were observed in microstructure, which revealed ductile fracture morphology. Key words: titanium alloy; microstructure; heat treatment; mechanical properties


Metals ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 200 ◽  
Author(s):  
Xiaoguang Fan ◽  
Qi Li ◽  
Anming Zhao ◽  
Yuguo Shi ◽  
Wenjia Mei

Sign in / Sign up

Export Citation Format

Share Document