Performance of Self-Lubricant Bearing from Composite Material and its Application Practice in Textiles

2013 ◽  
Vol 706-708 ◽  
pp. 189-192
Author(s):  
Xian Fang Wang ◽  
Yong Sheng Song

Self-lubricant roller bearing from composite material of caprolactam, carbon fiber, and graphite was made. And its molding process was discussed. Its friction and deformation performance was studied. Moreover, different varieties of yarns were spun in the spinning machine for contrast tests. The results show that: The yarn from the machine with this bearing has better quality and without any oil-polluted yarn. And oil cost is only 0.05% of a ordinary oil bearing. As well as its labor is reduced. Thus it can bring greater economic value for enterprises.

Author(s):  
Yiyong Yao ◽  
Liping Zhao ◽  
Sheng Hu ◽  
Rongya Zhou ◽  
Mei Zheng

In the traditional molding process of laminated carbon fiber reinforced C/C composites - preform, it always causes great damage to a high modulus carbon fiber. Research about key factors for jet puncture in multilayer composite material is proposed in this paper. With the method, carbon fiber is added into the laminating direction of high-modulus carbon cloth by using jet method, so the preform is combined together to improve interlayer fiber connection strength in laminating direction (Z direction). Firstly, the key factors in jet puncture process are investigated. Parameter optimization and dynamic modeling of jet process have been studied to explore the mechanism of jet puncture process. Then a fluid simulation is conducted by studying the formation and distribution of diffusion flow field, jet resistance, penetration ability and jet kinetic energy loss. Finally, the fluid software is used to simulate and obtain the optimal structure of carbon cloth and the nozzle. It is expected that this paper can provide a new and effective approach for Z-puncture reinforcement fibers of laminated composite materials.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2014 ◽  
Author(s):  
Yuqin Ma ◽  
Yatao Zhao ◽  
Yun Zhang ◽  
Jie Wang ◽  
Yi Chen ◽  
...  

The critical infiltration pressures of the matrix in a two-dimensional (2D) carbon fiber preform were calculated theoretically, and the calculated values of the static and dynamic models were 0.115 and 0.478 MPa, respectively. Compared with the dynamic model, there is no viscous resistance or infiltration front gas pressure in the static model, so the static value is obviously lower than the dynamic value. To verify the rationality of theoretical calculation, 2D carbon fiber reinforced plastics (2D-CFRP) with infiltration pressures of 0.5, 0.6, 0.7, 0.8, and 0.9 MPa were prepared by the vacuum infiltration hot pressing molding process. The microstructure of the composite was observed and the bending strength was tested by three-point bending test. The results show that the infiltration pressure has an important influence on the infiltration effect and the bending fracture morphology. When the infiltration pressure is 0.7 MPa, the composite has an excellent infiltration effect. The fibers distribute reasonable in the fracture. Stress can be effectively transferred when the composite material is loaded. And the bending strength of the composite material reaches 627 MPa at this time.


2013 ◽  
Vol 372 ◽  
pp. 17-20 ◽  
Author(s):  
Haruhiko Iida ◽  
Hidetoshi Sakamoto ◽  
Yoshifumi Ohbuchi

The purpose of this research is the development of new design method for integrating the optimum strength evaluation and the product design which can make the best use of material's characteristics obtained by the experiment and the analysis. Further we do design using high-strength composite material with this developed concept which is different from conventional design. First, to establish this design method of high-strength materials, we examined these materials characteristics and manufacturing methods and the commercialized products. As this research target material, we focus the fiber reinforced materials such as composite with carbon fiber, glass fiber and aramid fiber. Above all, we marked the carbon fiber which has the high specific tensile strength, wear resistance, heat conductivity and conductance. Here, we introduce the fundamental design concept which makes the best use of the design with enough strength.


2014 ◽  
Vol 926-930 ◽  
pp. 141-144
Author(s):  
Xu Cui ◽  
Yan Jiao Huang ◽  
Yu Gao ◽  
Shuo Wang

In this paper, low temperature oxygen plasma treatment method was adopted to process the carbon fiber surface. Flexural Strength test method was utilized to represent f composite material flexural strength. This paper observed flexural failure morphology of composite material by aid of SEM, then it compared the mechanical property, hygroscopicitiy and flexural strength retention rate of composite material before and after the plasma treatment. Results showed that the optimum treatment conditions of carbon fiber were 300W treatment power and 15-minute treatment time. Under the condition, the highest flexural strength value be increased by 19.55%.Saturated bibulous is low and bibulous rate is slow, flexural strength retention rate is 94.9%. And at the same time PES-C resin matrix can be strengthened, which will further improve the mechanical properties of composite materials.


2021 ◽  
Vol 16 (6) ◽  
pp. 861-868
Author(s):  
Mengge Lv ◽  
Xinfang Wei ◽  
Liwen Peng

Conductive hydrogels have shown excellent application prospects in the fields of bioelectronics, tissue engineering, wearable devices, etc. However, its poor compatibility at the organic-inorganic interface affects its mechanical strength and limits its wide application. We prepared carbon fiber-polyacrylamide organic-inorganic composite material by electrochemical polymerization using N,N-methylenebisacrylamide as the crosslinking agent, acrylamide as the monomer, and carbon fiber as the conductive filler. It forms a conductive hydrogel after absorbing water. The effects of monomer concentration, reaction time, and current on the composite material were investigated in this article. The experimental results show that a large number of irregular bumps are produced on the surface of carbon fiber, and various characterization tests show that it is polyacrylamide (PAM) that successfully attached to carbon fiber. Under the same electrochemical polymerization time, the current density and monomer concentration have little effect on the molecular weight which mainly concentrated around 6.2 × 105. The graft modification of PAM reduces the defects on the surface of the carbon fiber, and the composite effect is good.


Sign in / Sign up

Export Citation Format

Share Document